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Abstract: As the first step to implement a memory compression algorithm, a chipset needs to be synthesized to a target that easily allows compression algorithms added.  The existing 450GX chipset is an NEC ASIC, so targeting a general purpose FPGA such as Altera or Xilinx would allow quick design iterations as different compression methods are tested.  This paper talks about the current state of memory compression which leads to the motive of synthesizing to FPGAs.  Implementation and details of retargeting VHDL to an FPGA are discussed and conclusions are made between two FPGAs.  Finally, conclusions and future plans of work are discussed.
Introduction

There is an increasing bottleneck between the processor and the main memory that is needed to continue program execution due to cache misses.  This information can be split into three different types:  Instruction data contains the future code instructions for the program to continue processing.  Address information holds the virtual memory address locations of jump conditions and other memory addresses.  General data information holds operands of the program that need to be read or written to main memory.  This bottleneck is a result of increasing silicon speeds allowing processors to be faster by many multiples the circuit board speed.  Although overall memory bandwidth has been increasing, processor demands have been outstripping ability to provide required information.

General trends in the industry can be seen as parallel circuit board traces are replaced high speed serial networks that can easily switch packetized protocols.  For multimode networks this makes sense, but for the predominate computer industry, there is a single path between processor and main memory.  This is growing computation/memory gap is well known [1], simply increasing the parallel connection higher raw bandwidth can be achieved, but the variance within software execution does not allow full use of this higher bandwidth.  
Background

Various simulations have been accomplished illustrating the compressibility of these three different types of information.  They illustrate that typical processor-memory transactions are by nature highly compressible by using such measures as zeroth order Markov entropy and first order Markov entropy.  These measurements help illustrate the maximum compressibility available on a given set of symbols.  [2], [3], [4], [5], [6]
IBM has implemented a method of compressing instructions upon compiling code for the PowerPC, [7], [8] where the instructions are compressed to variable length codes with lookup tables that allow the memory controller to fetch a full block with indexes, decode instructions for the block and provide in full length to the PowerPC.  The algorithm uses a simple key to determine how long the variable length of the instruction is.  This variable length code is then looked up in a reference table of commonly used instructions.  For instance a 7 bit code field would result in a full 32 bit decoded instruction for the processor.  Compression of code results in sizes that are 35-40% smaller than original.  Figure 1 shows the IBM implementation for instruction code compression. [7]
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Figure 1. An integrated design including the CodePack decompression core




This implementation is very useful in an embedded software environment where often the instruction code is separated physically from main memory in a non-volatile device such as FLASH.  If speed is essential, the decoded instructions can be shadowed into larger RAMs, but the smaller (less expensive) non-volatile devices can still be used.  

IBM has also introduced MXT technology [11] [12] [13] [14] [15] which is available on Intel processors for memory compression.  This has not achieved widespread acceptance, so learnings from this implementation can be studied and improved.  Preliminary results show the compression structure can accommodate between 1:1 to a maximum 64:1 compression ratio with most common applications showing a 2:1 compression ratio.  Overall performance improves in some cases where conventional memory configurations are executing tasks that swap to disks by 2X.  IBM quotes “MXT provides a system cost leverage not seen since the invention of DRAM” [11]  This method has been implemented in the Pinnacle chipset of Broadcom in 2000, but has not seen wide customer acceptance or press.
The basic organization is shown below where the chipset uses a 32MB cache to lookup 1KB entries in the compressed memory.  The compressed memory is arranged in 1KB blocks which are compressed in parallel, but is buffered to prevent read/write conflicts during compression/decompression.
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This parallel compression is shown below where 256 cycles are needed to complete the 4-way parallel Ziv-Lempel (LZ77) adaptive dictionary compression.
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Decompression is much simpler and quicker than compression since the dictionary does not need to be generated, but simply looked up and decoded.  The Pinnacle implementation can decode 16 bytes per bus cycle which supports the 16 bytes per bus cycles bandwidth of uncompressed reads.  Therefore the main speed constraint is when the compression is occurring.
A main detraction of MXT is that the implementation uses about 1 million additional gates.  This is acceptable in a server environment, but does not justify the cost to implement a change in the current mass market.  A potentially simpler algorithm may be of interest to implement in a higher volume market.  
In order to do proper studies, and improve upon the previous methods, a reliable platform to test different compression methods needs to be constructed.  Since there are still unknowns in how long this will take, how many errata will affect the processor/memory interface, and how much debug this will take, focus needs to be placed on synthesizing and implementing a standard platform with the FPGA chipset.
Implementation
To illustrate different compression algorithms realistically, simulations need to give way to running software in real time.  By using an existing architecture (Intel PentiumPro server), the chipset interfacing processor to memory can be replaced with an FPGA that allows different compression algorithms to be implemented.  The 450GX chipset is used.[9], [10] The proprietary Intel front-side bus interface and memory control chip (453GX DC) and the data path interface (452GX DP) chip are synthesized into Altera FPGAs.  These FPGAs are then connected to existing platforms which have the 453GX and 452DP removed.  This allows the FPGA to interface between main memory and the processor(s).

This chipset was designed several years ago, and based on the VHDL log files, 12 people were involved between July 1993 and June 1996.

Results

As a new synthesis into an FPGA, the 165,880 lines of VHDL source code could hold many problems.  For this reason the project was split into three sections.  First, the less complex data path chip was first synthesized whose main function is to buffer data between processor bus and memory system.  Once this was done the more complicated data control chip was done that interfaces between processor bus protocol and memory CAS/RAS signalling.  Finally the data control chip was synthesized to a different FPGA to check how synthesis results differed.
Results 1: Altera Data Path 452GX chip

Targeting first the simpler datapath chip, ~33,000 lines of code were successfully synthesized early November 2003.  The main difficulties were porting the NEC primitives into Altera FPGA primitives (xor trees, D-flipflops, tristate drivers, etc) and porting the dual-port RAM buffer in an Altera FPGA memory array.  
For example the xor tree (xr_26) used to generate ECC was defined as follows:
      I1 : F516  port map( N01 => n101, H01 => LD2_1, H02 => LD3_1, H03 => LD1_1 );

      I2 : F516  port map( N01 => n102, H01 => LD2_2, H02 => LD3_2, H03 => LD1_2 );

      I3 : F516  port map( N01 => n103, H01 => LD2_3, H02 => LD3_3, H03 => LD1_3 );

      I4 : F516  port map( N01 => n104, H01 => LD2_4, H02 => LD3_4, H03 => LD1_4 );

      I5 : F516  port map( N01 => n105, H01 => LD2_5, H02 => LD3_5, H03 => LD1_5 );

      I6 : F516  port map( N01 => n106, H01 => LD2_6, H02 => LD3_6, H03 => LD1_6 );

      I7 : F516  port map( N01 => n107, H01 => LD2_7, H02 => LD3_7, H03 => LD1_7 );

      I8 : F516  port map( N01 => n108, H01 => LD2_8, H02 => LD3_8, H03 => LD1_8 );

      I9 : F511  port map( N01 => n109, H01 => LD2_9, H02 => LD1_9 );

      I10 : F516  port map( N01 => n201, H01 => n101, H02 => n102, H03 => n103 );

      I11 : F516  port map( N01 => n202, H01 => n104, H02 => n105, H03 => n106 );

      I12 : F516  port map( N01 => n203, H01 => n107, H02 => n109, H03 => n108 );

      I13 : F516  port map( N01 => Sout, H01 => n201, H02 => n202, H03 => n203 );

Since F516 can be deduced to be a 3-input XOR gate, the resulting architecture using general IEEE library functions and not NEC ASIC library calls:


Sout <= (LD1_1 XOR LD1_2 XOR LD1_3 XOR LD1_4 XOR LD1_5 XOR LD1_6 XOR LD1_7 XOR LD1_8 XOR LD1_9 XOR  LD2_1 XOR LD2_2 XOR LD2_3 XOR LD2_4 XOR LD2_5 XOR LD2_6 XOR LD2_7 XOR LD2_8 XOR LD2_9 XORLD3_1 XOR LD3_2 XOR LD3_3 XOR LD3_4 XOR LD3_5 XOR LD3_6 XOR LD3_7 XOR LD3_8) ;
By modifying the library, future calls to the xr_26 component synthesize.  Although xr_26 is not the primitive, I found it easier to go through the library orion_asic_1_cells_pkg.vhd and modify to be general logic than generate an entirely new library that instantiated such primitives as F516.  I also did not want to inherit unnecessary levels of reference which could possibly affect the technology mapping section of synthesis.
A total of 67 such constructs were converted to general logic.  Most were of the following list:

· Embedded RAM that needed to be mapped to FPGA specific DP RAM

· Different buffers for different drive strengths and speeds

· PLL constructs that need to be mapped to FPGA specific PLL constructs

· Different types of buffers such as processor GTL and memory

· JTAG testing buffers which in this case are treated as general purpose registers.

A lot of time was also spent configuring the files and locations to be accessible by the Altera native synthesizer (Quartus version 3.0)  Overall, the VHDL logic was well written, and with the exception of multiple WAIT statements in a process, the code synthesized in 3:55 (on a 1.7GHz Pentium/512MB) into 1,613 Altera logic elements (roughly 50,000 gates).  2K bits of embedded RAM was used for the dual port buffer and can easily be adjusted to try different buffer sizes to measure performance improvements on larger buffer sizes.  176 IO pins are consumed due to the 64 data lines on the processor bus and the 72 (includes ECC) signals on the memory side.  Timing results show a worst case propagation delay of 10.4ns and a worst case global clock setup time requirement of 7ns (or 141MHz).  This means the chip itself is capable of running much faster than the target motherboard rate of 66MHz.  Due to the FPGA interconnect circuitry; the 66MHz will probably still have to be slowed down.  This will basically constitute of an external function generator supplying a slower clock frequency to an on-board master clock synthesizer.  Ten state machines (each of which has fewer than 17 states) are part of the data path logic which by default encode to one-hot state machines.  Surprisingly the Altera Quartus II tool does not allow different types of FSM state assignments to be configured.  If different state assignment methods are needed either reliance on a third party synthesis tool (Synopsys or Synplicity) would be needed.
Results 2: Altera Data Control 453GX chip
Synthesis of the 453GX memory control chip was finished based on the experiences gained in the 452GX data control chip.  (I have been keeping these designs separate since the physical layout of the circuit board is still undetermined.  I do not want to be forced into a BGA package when two separate chips may be available in more easily debuggable quad-flat packaged devices).  It is interesting to note that based purely on the VHDL lines of code I was expecting the data control block to be 5-10 times as complex as the data path block.  In reality this was 7,434 Altera logic elements (or about 230,000 gates) which is 4.6X complexity of the data path chip.  See figure below for detailed comparison with Xilinx compile.  
The data control block uses a rambit component using the OF08 primitive that had to be translated as follows from the code below:


latch :
PROCESS (Wr_en, Data_In)

      BEGIN

         IF (Wr_en = '1') THEN




tmp <= Data_In;

         END IF;

      END PROCESS latch;

Output <= tmp;

Z_Output <= tmp when (Z_Rd_en = '1') else 'Z';

--   I1 : OF08

--      port map (

--                H01 => Data_In,

--                H02 => Wr_en,

--                H03 => Wr_L_en,

--                H04 => Z_Rd_en,

--                H05 => Z_Rd_L_en,

--                N01 => Output,

--                N02 => Z_Output

--               );

In the data control files there were four files that had file names swapped between them.  This required time to understand exactly which entity matched with which architecture.  The Altera synthesis software requires that if file A calls a component in file B that file B is synthesized before A.  This required a lot of time to organize the 140 data control entity/architectures along with the three library files.  These library files are:

· Orion_asic_1_cells_pkg: defining how the lowest level elements are synthesized (see the ECC example above)
· Orion_DC_pkg: defining constants and types used throughout the design

· Orion_cdel_pkg: component declarations for all entities that were called on by other VHDL code
Results 3: Xilinx Data Control 453GX chip
Finally, the data control chip design was synthesized to a Xilinx FPGA.  This was to show a comparison between two different FPGA vendors.  The chip uses some of the Synopsys library for attribute definition, and for some reason I could not use the Xilinx supplied Synopsys library.  By adding to the design the Altera Synopsys attribute definition file, and referencing the WORK library instead of the SYNOPSYS library the synthesis succeeded.  Learning the Xilinx tool ISE5.2i took a little time.  The lack of reliance on source file structure is nice, but the report file generation is not as clean and concise as Altera’s tool.  The Xilinx Spartan-3 S2000 part was selected since this is a common family of Xilinx parts.  Only the data control chip was synthesized to a Xilinx FPGA since it is the most complex and would require more time to target the dual port 2Kbit RAM into the Xilinx RAM array.

The Xilinx logic elements are similar to Altera’s with the two shown below from their respective datasheets:

Altera Cyclone logic element [16]
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Xilinx Spartan-3 logic element [17]:
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Figure 6: Simplified Diagram of the Left-Hand SLICEM




The table below shows some synthesis comparison details.
	Parameter for Data Control chip
	Altera – Cyclone C6
	Xilinx –Spartan3 s2000

	Logic size
	7,434 logic elements
	7,190 elements

	Estimated gate count
	230,000
	340,000

	Compile time (P4 1.7G/512MB)
	22:11
	25:31

	Pins
	159
	152

	# State machines
	36
	36

	     Max number of states
	52
	37

	Total register count
	2088
	2088

	Max global clock speed
(> Tsu, Tco, Tpd, Th)
	73.8MHz/13.4ns
	84.7MHz/11.8ns

	Max fanout (global clock signal)
	2089
	1732

	Total fanout 
	28243
	

	Average fanout
	3.72
	

	Peak memory usage
	
	151MB


Although there are a lot of similarities, there is a couple striking differences.

1. The gate count estimation differs drastically.  This probably has to do with how the gates are counted.  The Xilinx S2000 part boasts 2 million system gates, so 17% of the logic usage is about 340,000 gates.  The Altera Cyclone C6 part contains 5980 logic elements and no corresponding estimate of how many system gates this is.  By looking at an older family with very similar logic elements in the 10K130 family, 6,656logic elements generate 211,000 system gates.  The discrepancy probably has a lot to do with marketing tactics, so other metrics are more useful such as speed, power, cost.  For this reason I am not very alarmed by the difference.
2. The Altera synthesis has one state machine that has 52 states named CurState_R.  Xilinx needs only 37 states for this state machine.  Based on the synthesis log, Xilinx finds there are 14 inputs that are never used, and therefore presumably reduces the state count accordingly.  There does not seem to be any indication of the FSM encoding type of Xilinx FPGAs, so I would assume one-hot (with the removal of the 14 unneeded inputs) result in the 37 states Xilinx uses.  Several other state machines have exactly the same state count between Xilinx and Altera implementations.
Although there are some parameters that are not available in both report files, the comparable parameters are very similar.  The basic reason being the similar logic element structure composed primarily of a 4-element lookup table and flip-flop.  Certain parallels can be made between these two FPGA competitors and micro processor competitors Intel and AMD.  Both have a lowest common denominator (logic-element :: 32-bit-IA-instruction-set) and both compete on customers picking based on speed, price, power, tools, etc.  

The fact that both separate toolsets, targeting different architectures, used exactly 2088 registers indicates there is little further optimization available from a high level on this design.  Both toolsets provide few options to tweak the synthesis flow.  In both Altera and Xilinx there is the ability to focus on area or speed, and since speed is not much a concern with the results above, I synthesized to area.  Otherwise there was no ability to dictate the manner of FSM assignment, decomposition, or other techniques learned in class.  Both tools did have the ability to mark certain nets as critical to optimize timing for them.  They also were able to do floor plan editing of placing and locking logic elements such that hand-editing could fine-tune performance.  
Conclusions
The amount of time spent on this project was sporadic.  Upon first thinking of the project the 28,552 VHDL files looked extremely daunting and I thought I might only succeed in synthesizing the simpler datapath logic.  After understanding the file functions better, and fixing such things as disjoint entity/architecture files only 32 files remained to compose the architecture of the data path logic.  Fixing the library and organizing the synthesis flow (since the 32 files are hierarchical and need to be stated in order for the Altera synthesis tool), and other corrections described above took about twenty hours.  The data control chip, with 140 core architecture files had to repeat this process, but with the benefit that most of the library issues had been solved, took another twenty hours.  Finally learning the Xilinx tools and making corrections described above for the Xilinx flow took about fifteen hours.  Most of the time was spent synthesizing and finding the first error message and finding out what dependency was broken and fixing it.  Once fixed, repeat the process until the entire synthesis was completed.  There were a few times where the changes needed seemed very difficult, (such as when the code used unsigned types and Altera DP RAM blocks use std_vector types) but in general there seemed to be slow but steady progress.  A total of 55 hours is estimated spent on this project not including research in the papers referenced.
The impact of the MXT implementation (claiming a general 2X performance improvement on job performance due to the increased memory available) is still being investigated.  One curious item is that though it was released in the Pinnacle chipset in 1990, there have been no comments that I can find since 1991 on either the web or IBM’s Linux patch area.  This suspiciously indicates that either there are significant bugs in the system that no one is turning the feature on, or people are not seeing much benefit from it.  I am pursuing this by checking with IBM and asking internal Intel questions about the competitive advantage of having memory compression.  In the server arena where large amount of memory are needed memory compression seems to make sense.  In the smaller memory configuration arena of the personal computer, memory is a smaller component of the entire system and would have smaller ROI for a memory compression chipset.  This is especially true when requiring the million gates MXT requires.  Since a gain of performance architecturally of as small as 1-2% can mean increased market share and profits, this may still be a good research area.
Should memory compression not be a good avenue for research, after discussions with Dr. Shih-Lien Lu, other areas of interest could be in intelligent memory fetches.  If there were a sequencer or small micro-controller embedded in the chipset that could detect when the software was fetching different patterns, the sequencer could predict what the next cache line fetch would be and have it ready in the chipset cache before the processor requests it, thereby reducing response delay of data to processor reads.  By gathering data on how real programs run at real speeds and how much optimizations can be made, a case can be made against the added cost and area of developing such a predictive fetch engine.

Other avenues of research are possibly available and Dr Perkowski has offered some helpful suggestions as well.

Regardless of the final research area, the FPGA needs to be implemented on a small circuit board and mounted on an existing system to boot an OS.  Prior to doing this, a simple simulation of a processor read and write operation would go a long way to validate that the synthesis was done properly.  Even though Altera and Xilinx synthesis flows have similar results, there may be blocks that were not synthesized properly.  I may have implemented and primitive conversion incorrectly someplace.  The only direct VHDL change I made was where multiple WAIT statements in an error process was used to extend the error phase.  Since the error phase has been actually removed in current processor front side bus protocol, I have left it commented out resulting in a single bus cycle error.  There were some testbench VHDL files with the source code, but they do not look like reader friendly tests.  I think it would be easier to implement a new test file to generate the simple sequences. 
Once the chips are mounted, an ITP (Integrated Test Port) may be needed to ensure (through a JTAG chain) that the registers within the chipset are readable and writeable.  This would be very use in debugging and single-stepping through simple executions.  Additional debug can be done by probing the chipset signals directly or extracting debug signals from the FPGA to external testpoints that can be debugged.
For now, the current plan of development is as follows:


Winter 2004 – Design and fabricate FPGA interface circuit board
Spring 2004 – Connect circuit board to PentiumPro server and attempt to boot various operating systems (Windows/Linux/DOS) allowing more advanced testing to be done.  This will involve logic analyzer probing as well as simulations to debug.

Summer 2004 – Code and implement different compression algorithms or other research areas and test.

Fall 2004 – Writeup results and possibly publish.

Special thanks to Dr Shih-Lien Lu for his help in directing me and brainstorming on this.
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