
by P. A. Franaszek
P. Heidelberger
D. E. Poff
J. T. Robinson

Algorithms
and data
structures for
compressed-
memory
machines

An overview of a set of algorithms and data
structures developed for compressed-memory
machines is given. These include 1) very fast
compression and decompression algorithms,
for relatively small fixed-size lines, that are
suitable for hardware implementation; 2)
methods for storing variable-size compressed
lines in main memory that minimize
overheads due to directory size and storage
fragmentation, but that are simple enough for
implementation as part of a system memory
controller; 3) a number of operating system
modifications required to ensure that a
compressed-memory machine never runs out
of memory as the compression ratio changes
dynamically. This research was done to explore
the feasibility of computer architectures
in which data are decompressed/compressed
on cache misses/writebacks. The results
led to and were implemented in IBM Memory
Expansion Technology (MXT), which for
typical systems yields a factor of 2 expansion
in effective memory size with generally
minimal effect on performance.

1. Introduction
This paper gives an overview of a set of algorithms and
data structures developed for systems with main-memory
compression. In such systems, essentially all data are
maintained in compressed form, and decompressed
on access. The advantage is a potentially substantial
improvement in price/performance, since the memory is
typically the most expensive component in the central
electronic complex (excluding disk storage) in server-class
machines. The approaches described here are incorporated
in IBM Memory Expansion Technology (MXT) [1], which for
typical systems yields a factor of 2 expansion in the effective
memory size, with generally minimal effect on performance.

It is well known that the contents of memory are
generally compressible. This can occur because of
repeated patterns in data or programs, or alternatively
because pages may not be entirely filled; that is, they
may have long strings of zeros. Such compressibility
traditionally is exploited in a number of ways, including
compression of files to be sent to disks or transmitted over
networks, and also maintaining substantial portions of
main-memory contents in compressed form. The latter
approach can be seen in the IBM System/390* (for
example see [2]), for which a primary use is in

rCopyright 2001 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/01/$5.00 © 2001 IBM

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 P. A. FRANASZEK ET AL.

245

compressing database contents, as well as in some
embedded RS/6000* processors for compressing object
code [3]. For these cases, the data are known or scanned
in advance, so that appropriate compression dictionaries
or tables can be preconstructed.

A substantially different problem arises if essentially all
data are to be compressed, the data are not known in
advance, and the unit for compression is a page or less.
A number of studies and designs for this case have
proposed new compression techniques as well as system
architectures. These include examples from Loughborough
University [4], the University of Texas [5], Yonsei
University [6], AMD [7], and others. In some cases,
compression can be done in software (e.g., [5, 8]);
in others, for example [4], a hardware compressor is
proposed. A particularly interesting example is the
Crusher system [9] developed at IBM Rochester, which
may have been the first to have operational hardware.1 In
many respects (e.g., a 1KB unit of compression), system
operation was similar to MXT. However, the compression
algorithm, the storage and directory architectures, and
some aspects of the system structure are different. In
comparison with Crusher, MXT offers substantially
smaller compression/decompression latency and notably
improved compression and storage efficiency.

The compressors used in the above systems and designs
are in the class termed compression by textual substitution
(e.g., [10]), or, alternatively, Lempel–Ziv compression [11].
Early work on this class of algorithms appears in [12].
These operate by substituting repeated phrases by pointers
to other occurrences within the block of data to be
compressed, or to a dictionary of such phrases. For cases
in which general data are to be compressed, with the unit
of compression no greater than 4 KB, constructing a
separate dictionary appears inappropriate, and
compression operates by replacing phrases with pointers
to other occurrences within the block. This requires
finding common phrases, a task performed with the aid of
hashing (in software), or content-addressable memories
(in hardware). The first fully described publication of a
compression technique with this property is LZ77 (or
LZ1; see for example [11, 13]), of which there are
numerous variants. Existing hardware implementations of
such variants, such as IBM’s ALDC [14] are very fast,
compressing one byte per cycle. However, further speedup
is critical, especially for decompression. A prominent
example of a compressor achieving further speedup is that
of X-match, in which, as in LZ77, pointers are substituted
for instances of phrases with prior occurrences, but here
phrases are extended four bytes at a time, with special-
case handling of phrases not aligned on four-byte
boundaries. The speedup improves with the length of the

data block to be compressed, and is approximately a factor
of 1.5 for 4KB pages [4]. This compressor has also been
used in other studies [6]. A very similar technique was
obtained independently at the University of Texas [5]. A
different direction for speeding up coding/decoding was
developed in connection with Crusher: The compression
window (the part of the compression block examined for
earlier examples of the phrase) was limited in length, and
the pointer format was restricted for simplicity, so as to
permit faster clocking. The result was some speedup,
but at the expense of compression efficiency.

Significant speedup over X-match requires that multiple
compressors operate simultaneously. One possible
approach is to speculatively find matching phrases starting
at various points in the block, then choose the appropriate
one(s). This unfortunately entails substantial hardware
complexity, because essentially an additional search engine
is required for each separate speculation. Another
possibility is to split the block to be compressed and feed
the sub-blocks to separate processors. A problem here
is that each sub-block would contain too few repeated
phrases. This prompted an investigation of how such
multiple compressors could share information so as to
obtain good compression efficiency. The result was a
family of techniques [15] which yield parallel speedup with
little loss of compression. Hardware implementation is
discussed in [16]. A member of this family was
implemented in MXT, with a level of parallelism of 4.

Even with very rapid decompression, there is still
substantial decompression latency for some data. This
can be mitigated by maintaining a substantial amount of
frequently referenced items in uncompressed form. In
some proposals (e.g., [4]), the uncompressed data consist
of a set of pages or address space which is accessed as
in a standard machine. In one interesting example [7],
pages are decompressed on TLB misses. In MXT, the
uncompressed data are the contents of a large L3
cache. Cache lines are 1 KB in size, as is the unit of
compression, with cache lines decompressed/compressed
on access/storeback. Figure 1 illustrates a block diagram
of the system.

In most previous studies, the unit of compression is a
4KB page. This has the advantage that fewer variable-
length objects need be stored than for a 1KB unit, but
at the expense of greater latency in access and greater
required compression/decompression bandwidth. Obtaining
the advantage of lower latency and required bandwidth
requires an efficient way of storing and indexing
the data. Further, it is desirable to avoid the need for
reorganization or garbage collection, which may occur if
the memory is badly fragmented. The approach taken
in MXT [17–19] utilizes fixed-size physical-memory
blocks of 256 bytes. This would normally result in
excessive fragmentation: A 1KB line compressing into,1 J. D. Brown, IBM Rochester, personal communication, 1995.

P. A. FRANASZEK ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

246

say, 128 bytes would be allocated 100% more memory
than necessary. This condition is avoided via two
mechanisms [17–19]: Lines from subgroups such as a
page are permitted to share blocks, a strategy termed
“roommating” (or “fragment combining”), and lines that
compress very well are allocated no blocks, being stored
entirely in the directory. The result is a memory
organization which wastes little space and permits fast
access, with no need for reorganization. Figure 2
illustrates the memory layout. Virtual pages are
allocated “real” addresses, which are actually offsets in a
compression-translation table or CTT. Entries in the CTT
indicate the location of blocks holding individual 1KB
lines.

If the unit of compression is a page, and software is
invoked whenever a page is to be decompressed, the
operating system (OS) can check whether there is
sufficient space before decompression. In other words, the
compressed part of memory can be regarded as a more or
less standard paging store. A decompressed page is placed
in a part of memory which is accessed as in a normal
system.

The management of a memory like that of MXT, where
individual lines are compressed on access, is rather more
complex. Here the set of compressed pages can have
varying physical space requirements because of variations
in compressibility. If space must be recovered via paging,
the act of paging itself can result in additional memory
usage due to accessing system page tables and other OS
data structures that can expand and/or displace current
cache contents. A possible consequence is a system hang,
in which the memory controller cannot service a cache
fault. We term the ensured avoidance of this condition
guaranteed forward progress, or GFP. There are various
approaches to obtaining GFP. All require reserving some
space, which may be needed to ensure the success of
pageouts. The space could simply be a set of reserved
blocks. A possible alternative would be to have a set of
clean (i.e., backed on disk) pages as a reserve, which
could be erased when necessary. However, traversing and
modifying page tables to find members of this list could
itself require substantial reserves (because of possible
changes in the compressibility of the page tables and
the displacement of existing cache contents during this
process). An approach described below is to maintain a
list of such pages in a compact data structure we call an
outlist, which can be processed by the interrupt handler.

Given that the system exhibits GFP, an additional issue
is that of efficient virtual memory management [20]. This
entails mechanisms for allocating a combination of
physical space and real addresses, a task complicated
by the fact that the amount of physical space actually
available may not be easily observable, but can only be
estimated. An approach considered here is to use

estimates of the amount of immediately available free
space associated with reserves on reclaim lists, together
with estimates of quantities such as allocated but unused
memory.

The following is a summary of the paper. Section 2
discusses compression algorithms and gives representative
results for the compressibility of various workloads.
Section 3 discusses the organization of the compressed
memory, along with directory structures. It is shown
that for a variety of workloads, there is relatively little
overhead required over the raw numbers provided
by the compressor. Section 4 contains a discussion of
compressed-memory management and approaches to the
GFP problem. Finally, Section 5 relates these descriptions
to the MXT hardware and software described elsewhere in
this issue.

Figure 1

Overall system organization.

L2 L2 L2 L2

Processor Processor Processor Processor

Main memory

L3

Compression
engine

Figure 2

Compressed main memory layout.

CTT entry

“Real address”

Compression translation
table (CTT)

Physical
address(es)

256-byte
blocks

. . .

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 P. A. FRANASZEK ET AL.

247

2. Compression algorithms
Compression hardware for the memory-compression
application must have very low decompression latency and
high compression bandwidth. It should operate well on
relatively small amounts of data whose characteristics
are not known in advance. The only known family of
techniques with these properties is compression via textual
substitution, in which, as described previously, phrases in
the data are replaced by pointers to entries in a dictionary
of phrases drawn from the data to be compressed.
With small amounts of data, such as 1KB blocks as
implemented in MXT, it is inappropriate to construct a
separate dictionary. Instead, the dictionary is the data
itself. For example, in LZ77 or X-Match, phrases in the
data are replaced with pointers to earlier occurrences
of each such phrase. Thus, if the block of data to be
compressed consists of bytes A(1), A(2), . . . , A(n), and
A(1), A(2), . . . , A(r), r , n, has been compressed at a
given point, then in LZ77 the next phrase A(r 1 1),
A(r 1 2), . . . , A(r 1 q) is the longest such phrase
previously occurring (and where phrases may overlap).
If there is no such phrase with (typically) q . 1, then
A(r 1 1) is encoded as a literal; that is, the byte
A(r 1 1) is encoded as itself, as indicated (typically)
by a flag bit (there are numerous variations; for example,
Huffman coding may be used for pointers, phrase lengths,
and/or literals; see for example [13]). In the X-Match
variation, each A(i) above consists of four bytes of data,
and bytes at phrase boundaries are handled as special cases.

Hardware implementation for such encoders can be
done using a content-addressable memory, or CAM
(for example, see [14]). Referring to the above example,
in one CAM access A(r 1 1) can be compared with
A(1), A(2), . . . , A(r) and all matches found. Assuming
that one or more matches have been found, in the next
cycle A(r 1 2) can be compared (again using one CAM
access) with A(1), A(2), . . . , A(r 1 1), and hardware
logic determines whether the next matches found (if any)
are consecutive with previous matches. This continues

until no further consecutive matches are found, thus yielding
all occurrences of the longest matching phrases.

Although the CAM-based hardware implementation
is very fast, further speedup is required for the current
application. As discussed in the Introduction, X-Match
offers some speedup, but only a factor of roughly 1.5 for
4KB pages [4]. For 1KB lines, however, typical phrase
lengths are only a few bytes, thus substantially decreasing
the speedup of X-Match, since most phrases are now
special cases.

A natural approach to speedup is to have multiple
compressors operate simultaneously (and similarly,
multiple decompressors operating simultaneously for
decompression). As mentioned in the Introduction, one
method is to speculatively find matching phrases. That is,
referring to the above example, one could attempt to find
matching phrases starting with the currently uncompressed
data beginning with A(r 1 1), simultaneously with the
data beginning with A(r 1 2), and so on. One problem
with this is hardware complexity, since to use a CAM-
based implementation, a separate CAM would be needed
for each such starting point. Another problem is that the
maximum speedup is of the order of the average phrase
length, since at most one phrase is produced per cycle.

Another alternative would be to have separate
compressors operating on distinct subsets of the data. A
problem here is that compression suffers because of the
smaller amount of data available to each compressor. In
[15, 16] this issue is addressed by introducing a class of
LZ-like algorithms in which multiple compressors operate
simultaneously on all of the data, subject to constraints
that ensure decodability. In practice, a stronger constraint
is required, that of single-pass encoding/decoding (the
latter being a requirement for low latency). Single-pass
encoding/decoding is a property of LZ77, X-Match, and
other LZ-like algorithms. However, it is not a necessary
condition for compression via textual substitution
(see [10, 15]).

Let B(1), B(2), . . . , B(n) be some ordering of the
data A(1), A(2), . . . , A(n). Suppose we partition this
block into k sub-blocks, each of length n/k, and use k
compressors to compress (in parallel) each such sub-
block, with the condition that each compressor may find
matching phrases in any of the k sub-blocks, subject to
constraints on decodability. As described in [15], the
compressed data can be decoded if and only if there are
no cycles in the character dependency graph. One way
to ensure this is to have a partial order B(i) , B(j) if
1 1 [(i 2 1) mod (n/k)] , 1 1 [(j 2 1) mod (n/k)], and
to require that if B(j) depends on B(i), then B(i) , B(j)
in the partial order. Figure 3 illustrates the algorithm for
k 5 2. Here, phrase X1 is matched with a phrase from
the other block. Phrase X2 is matched within the same
block.

Figure 3

Example of two-way parallel encoding.

X 1

X 2

Block 1

Block 2

P. A. FRANASZEK ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

248

Figure 4 provides an example configuration of a parallel
hardware implementation for the case of a 1KB block
split into four 256-byte sections, with four-way parallel
CAM-based compression. As shown in the figure, four
uncompressed data input streams are routed to separate
sections in four replicated CAM-based compressors. Thus,
at any point in time, each of the four compressors “sees”
not only the previously input data from the stream it is
compressing, but the previously input data from the other
three streams as well. An alternative hardware design
involves using a common memory array for the four
CAMs shown (however, four separate comparator arrays
are required).

A parameter of interest is the size of the unit of
compression. With too small a size, compressibility will
suffer. Conversely, too large a size will produce excess
decompression latencies and hardware complexity. In [15]
tradeoffs between compressibility and sizes of the unit of
compression were also investigated; typically there is a
knee in the curve at about 512 bytes (an example is shown
in Figure 5). A unit of 1 KB was chosen as a good
compromise.

3. Memory organization
A key difference in memory organization between
MXT-like compressed-memory systems and traditional
architectures is that there is an additional level of address
translation: After virtual-to-real address translation, real
addresses are “translated” to physical addresses (in
hardware) by means of a CTT (compression translation
table). With a 1KB unit of compression, each CTT entry
contains either 1) the compressed data itself (for highly
compressible data—for example, a 1KB segment consisting
of all zeros); 2) pointers to one or more blocks containing
the compressed data; or 3) pointers to a number of blocks
containing the data in uncompressed format. (A small
area of memory, an “uncompressed region,” may also be
provided in which there is no real-to-physical address
translation or compression. That is, real addresses are
used directly as physical addresses bypassing the CTT; in
MXT such an option is provided at system initialization.)

As an example, with an L3 cache-line size of 1 KB (the
unit of compression), and a block size of 256 bytes (as in
MXT), after a virtual address is translated, the result is
used not only as an associated real-memory address, but
also as a pointer or an index to an entry in the CTT. Each
CTT entry contains flags, fragment-combining information,
and pointers for up to four blocks. At most four blocks
are required, since if a given line does not compress, it is
stored in an uncompressed format, as indicated by a flag
in the directory entry. On an L3 cache miss, the memory
controller and decompression hardware find the blocks
allocated to store the compressed line and dynamically
decompress the line to handle the miss. Similarly, when

Figure 4

Hardware for four-way parallel compressor.

Data
in 4

Data
in 3

Data
in 2

Data
in 1

1024 � 8 CAM

Bytes 0–255

Bytes 256–511

Bytes 512–767

Bytes 768–1023

1024 � 8 CAM

Bytes 0–255

Bytes 256–511

Bytes 512–767

Bytes 768–1023

1024 � 8 CAM

Bytes 0–255

Bytes 256–511

Bytes 512–767

Bytes 768–1023

1024 � 8 CAM

Bytes 0–255

Bytes 256–511

Bytes 512–767

Bytes 768–1023

CAM
input

CAM
input

CAM
input

CAM
input

Encoding
logic

Encoding
logic

Encoding
logic

Encoding
logic

Compressed
data out 1

Compressed
data out 2

Compressed
data out 3

Compressed
data out 4

Figure 5

Example of compressibility vs. block size.

1

0.8

0.6

0.4

0.2

0
0 500 1000 1500 2000 2500 3000 3500 4000

Block size � window size

Text, no Huffman coding
Text, fixed Huffman coding
Text, optimal Huffman coding

C
om

pr
es

si
on

ra
tio

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 P. A. FRANASZEK ET AL.

249

a new or modified line is stored, the blocks currently
allocated to the line (if any) are made free, the line
is compressed, and then it is stored by allocating the
required number of blocks. The last block allocated to a
line, called a fragment, may be combined and stored in the
same block with another fragment from a predetermined
set of lines associated with the given line, where this set is
called a cohort. Since this is done by hardware, under
normal operation the fact that main memory is compressed
is transparent to the OS. An exception is that because of
variations in compressibility, the OS must adapt to
changes in the amount of physical memory actually
available at any given time (as described in Section 4).

Figure 6 illustrates some possible formats in the general
case for the descriptors of four 1KB lines making up a
4KB page in the CTT; a block size of 256 bytes is
assumed. For this example, the descriptor for each line
has one byte of flag data, and enough space to hold the
addresses (30 bits for each address) of four blocks (at
most four blocks are required, since this suffices to store
the line in an uncompressed format). Note that with 30-bit
addresses and 256-byte blocks, this allows 256 GB of
addressability. The flags are as follows.

● (A) This flag (one bit) indicates whether the line is
stored in an uncompressed or compressed format.

● (B) This bit indicates whether the line is stored entirely
within the directory entry (for this example, this applies
to lines that compress to 120 bits or less).

● (C) Here, two bits are used to give the number of blocks
allocated to store the line (this applies only for lines

stored in a compressed format that require more than
120 bits).

● (D) One bit is used to indicate whether the line
fragment is at the beginning or end of a shared block
(here we assume two-way combining), and three bits are
used to store the number of granules (i.e., the smallest
unit of storage that can be used to store fragments,
which we are assuming is 32 bytes) occupied by the
fragment.

The entry for line 1 in Figure 6 has a format which
includes the addresses for all of the blocks holding a line.
In contrast, line 2 shows an alternate format in which
the first data after the flags is a block address, followed by
the first 60 bits of the compressed line. This would allow
latency in decompression to be overlapped with delays in
fetching the next block (at the expense of somewhat
greater hardware complexity). In this type of design,
each block would contain compressed data followed by a
pointer to the next block (if any). The entry for line 3
illustrates the case in which the compressed data are held
entirely within the CTT. For MXT, CTT entries analogous
to the formats of lines 1 and 3 are used.

There are two general approaches to the design and use
of CTTs. In a “static” CTT design, the CTT is allocated
(at system initialization) a fixed area of contiguous
physical memory of a size sufficient to support a maximum
degree of compression. This approach simplifies hardware
design, as well as modifications to existing operating
systems so as to support compressed-memory systems.
From the point of the view of the OS, physical memory
is the same size as that provided by the addressability of
the CTT, and “exists” at all times. However, if physical
memory becomes overcommitted (because of overall
decreasing compressibility), the OS can handle this
situation by zeroing and removing pages from the list of
available page frames (zeroing a page ensures that it can
be stored entirely within a CTT entry, thus requiring no
additional physical memory). If overall compressibility
improves (as indicated by an increasing number of free
blocks in the compressed-memory system), these page
frames can be added back to the list of available free
page frames (see Section 4).

An alternative approach for the design of the CTT
is a dynamic directory design. In this approach, the CTT
would be noncontiguous, and blocks to hold CTT entries
would be allocated and deallocated as required; that is,
the logical real memory would grow or shrink dynamically,
depending on the overall compressibility of physical
memory contents at any point in time. Although this
would entail minor additional hardware complexity, it
would require significant modifications to existing
operating systems so as to support an abstraction of real
memory as a system resource that can dynamically vary in

Figure 6

Possible CTT entry formats.

Flags

Compressed line (size <= 120 bits)

Flags

Flags

Flags . . .

8 30 30 30 30

16 bytes

Flags
(A) Compressed/uncompressed (1 bit)
(B) Stored in directory (1 bit)
(C) Number of blocks used (2 bits)
(D) Fragment information (4 bits)

Block 1
address

Block 1
address

Beginning of
compressed line

Frag.blk.
address

Block 2
address

Block 3
address

Block 4
addressLine 1

Line 2

Line 3

Line 4

Bits

P. A. FRANASZEK ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

250

size. The advantage of this approach is that no fixed upper
limit on compressibility need be assumed. At the current
time, OS use of dynamic CTT designs is an area for
further research.

Figure 7 illustrates a static CTT design with cases in
which a line is stored entirely within a CTT entry (line 1);
a line is compressed and allocated one full block and part
of a second block (line 2); and finally two lines in which
the fragments of the lines have been combined (lines 3
and 4). A comprehensive study of design alternatives
for fragment combining and the effects on overall
compressibility is included in [19]. As mentioned above, a
cohort is a set of lines that are allowed to share blocks of
physical memory. For example, as currently implemented
in MXT, cohorts consist of the four 1KB units of
compression corresponding to each 4KB page. Some key
results of this study are as follows. First, no fragment
combining leads to unacceptable overheads (overall
compressibility is significantly decreased). However,
if fragment combining is used, then among the many
alternatives for cohort size (where a cohort, as previously
stated, is a predetermined set of lines for which fragment
combining can take place), degree of fragment combining
(number of fragments that are allowed to share a block),
fragment-combining method (e.g., first-fit or best-fit),
and cohort determination, very little benefit is obtained
beyond using fixed cohorts of size 4 with two-way
fragment combining using either first-fit or best-fit.
MXT implements this approach: The cohorts consist
of the four 1KB lines in each 4KB page, and fragment
combining is two-way using best-fit.

It is of interest to see how overall compressibility is
affected by the overheads of maintaining a CTT entry for
each 1KB line, by fragmentation due to unused space in
the last block allocated to each compressed 1KB line (or
pair of compressed 1KB lines with combined fragments),
and by the effect of choice of block size. Table 1
illustrates these effects for three memory dumps: “AIX,”
a memory dump taken from an AIX* system running a
memory-intensive logic simulator; “NT(boot),” in which
the memory dump took place in a Windows NT** system
immediately after the system boot process completed; and
“NT(active),” in which the memory dump took place after
a number of memory-intensive application programs had
been started. The “raw” compression ratio is the average
compressed size (in bytes) of all 1KB lines in the memory
dump divided by 1024; thus, this represents a bound in
the sense that it is the compression that can be obtained
when there are no CTT space or storage fragmentation
overheads. The “naive” compression ratio is the overall
compression including CTT space and storage
fragmentation, but in which there is no fragment
combining or storage of highly compressible lines within
CTT entries: Each 1KB line is stored as some integral

number of 256-byte blocks. Finally, the MXT organization
compression ratio is the overall compression (that is,
including CTT space and storage fragmentation
overheads) obtained with 256-byte blocks, cohorts of size
4, two-way fragment combining, and lines compressing to
15 bytes or fewer stored within CTT entries. (The MXT-
like organization with 128-byte blocks is similar, except
that with the smaller block size, each CTT entry for a 1KB
line requires 32 bytes instead of 16, and lines compressing
to 31 bytes or fewer can be stored within CTT entries.)
The conclusion is that acceptable overheads are achieved
using the above approach in MXT. Note that slightly
better compression is obtained by using the smaller block
size of 128 bytes, which agrees with analytic results (see
[19]); however, this doubles the size of CTT entries, which
would require some additional hardware complexity.

4. Operating system support
In this section we consider new issues that an operating
system (OS) must confront when supporting a system in
which main memory is compressed. Without compression,
the OS must manage a memory of fixed size. In such a
system there is a one-to-one correspondence between the
amount of physical memory and the number of page
frames. Because the amount of addressable memory does
not change, the number of page frames is generally fixed
and known to the OS at boot time. As the number of page
frames used by applications changes, the OS can monitor
page-frame usage and ensure that there are always enough
available page frames to satisfy anticipated requests for
new pages. When the number of available page frames
drops below some level, the OS performs pageouts, in
which pages used by applications (or the OS itself) are

Figure 7

Examples of compressed lines.

CTT

Line 1

Line 2

Line 3
Line 4

A1

A2

A3
A4

Line 2

Line 3

Line 4

(Blocks)

Real address

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 P. A. FRANASZEK ET AL.

251

written to disk (if modified) and then placed in a pool of
available page frames.

In contrast, with compression, the OS must manage a
memory in which the amount of addressable real memory
(corresponding to the number of usable page frames)
is variable and changes dynamically according to the
compressibility of the pages currently in memory. There
is no longer a one-to-one correspondence between
the amount of physical memory and the amount of
addressable memory used. Both physical memory and
addressable memory are resources that must be managed.
For example, at boot time the system may be set up
with a predefined maximum number of page frames
(perhaps based on the expected compression ratio). If
compressibility is better than or equal to the expected
compression ratio, the OS runs in a traditional way and
performs pageouts when running low on available page
frames. On the other hand, if compressibility is worse than
expected, at some point in time the OS may have more
than enough available page frames but be low on physical
memory. In this case, the OS should perform pageouts, in
which pages are written to disk (if modified) and then
cleared so as to free up physical memory. (The zero-
page operation implemented in MXT is a useful and
fast method for freeing memory.) If compressibility
subsequently improves, the OS can allow more page
frames to be used by applications, thereby increasing
memory utilization.

In this paper we discuss issues related to managing
physical memory in two situations: “normal” conditions, in
which memory usage changes because of normal fluctuations
in either compressibility or the number of used page
frames, and extremely low-memory conditions, in which
the system is in danger of running out of memory.

Note that the compressibility of memory may change on
each L3 castout, and that such castouts are not generally
visible to the OS. Therefore, without proper controls,
an L3 castout may require more physical memory than
is currently available, possibly resulting in a system
crash due to an out-of-memory condition. While certain
implementations may make such an event highly unlikely,
we describe several approaches for ensuring that such an
out-of-memory condition can never occur, i.e., for ensuring
guaranteed forward progress (GFP).

Guaranteed forward progress
Some subtleties which must be considered in designing
software that ensures GFP include the following:

● One can never know the exact amount of free physical
memory at an instant in time. For example, whereas a
register in the MXT memory controller contains a count
of the number of free blocks, by the time a read to the
register is returned to a processor, the register contents
may have already changed.

● Upon access, only the referenced line is decompressed,
not the entire page. Thus, previous approaches of
permitting access only to uncompressed pages and
adjusting the number of compressed pages according
to the compression ratio must be modified [4, 7, 8].

● The L3 line size may be different from the unit of
compression (compression line). For example, suppose
the compression line size is k 5 1 KB but the L3 line
size is l 5 64 bytes. Then a castout of a single L3 line
might cause the entire compression line to expand.
A tight upper bound on the expansion is unknown.
However, in the worst case each cache line of length l
bytes may cause a physical memory expansion no larger
than the unit of compression k, for an expansion ratio
no greater than (k/l). Thus, a complete L3 cache flush
could increase physical memory usage by

L 5 uL3u 3 ~k/l ! 5 N3 3 k bytes,

where uL3u is the size of the L3 (in bytes) and N3 is the
number of lines in L3. For example, for a 32MB L3 and
the above-mentioned line sizes, a cache flush could
expand memory by 512 MB. In MXT, this effect
is mitigated, since k 5 l 5 1 KB, in which case
L 5 uL3u 5 32 MB.

We consider two general approaches to ensuring GFP.
The first approach limits the number of mapped pages
and, roughly speaking, ensures that there is always enough
free physical memory available to hold all of the mapped
pages even if they expand completely. Since an access to
an unmapped page generates a protection fault requiring
OS intervention, the OS can decide at the time of the
fault whether or not there is enough physical memory to
map the additional page. If there is enough space, the

Table 1 Compression of memory dumps.

Memory
dump

Raw
compression

(%)

Naive
organization

(%)

MXT organization
(256-byte block)

(%)

MXT-like
(128-byte block)

(%)

AIX 34.1 50.4 42.7 39.7
NT(boot) 48.8 65.2 56.8 54.2
NT(active) 36.3 53.2 44.9 41.7

P. A. FRANASZEK ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

252

page is mapped and program execution can continue;
if not, some other pages must be unmapped before
the newly accessed page can be mapped. Pages can be
effectively unmapped by setting appropriate protection
bits in the page tables. While other variations are
possible, in this discussion we assume that when a
page is unmapped, its lines are flushed from all caches.
Specifically, let F denote the amount of free space
(in bytes), let M denote the set of mapped pages (with
Bp bytes per page), and let M denote the number of
mapped pages. M must always include key OS and
driver code, data structures such as those required
for paging operations, and all pages involved in I/O.
If, when the OS decides whether or not to map a new
page, it ensures that

F $ M 3 Bp ,

it is guaranteed that the system will always have enough
memory; in the worst case, before the OS gains control,
all of the mapped pages could fully expand. Because only
mapped pages are in the cache, we need not worry about
additional expansion due to a cache flush. A method for
ensuring that this relationship always holds is the subject
of a pending U.S. patent application [21]; that method
includes handling the problems that F is continually
changing and there are delays in flushing lines from the
cache. The above free-space bound can be improved
somewhat by keeping track of the number of mapped
read-only pages. Compared to the approach of [4], in
which entire pages are decompressed, this approach has
the advantage of decompressing only accessed lines, which
both reduces the utilization of the
compression/decompression hardware and results in lower-
latency decompression times. Another advantage of this
approach is that it is free of interrupts. However, a major
disadvantage is that if M is small, the mapping/unmapping
overhead may be excessive, while if M is large, the free-
space requirement is excessive. In addition, this approach
may severely limit the number of pages that can be pinned
at any one time (to less than M if the system requires
pinned pages to be mapped).

A second general approach assumes that a low level of
available physical memory can be detected, for example by
having the memory controller signal an interrupt to the
processors when free space becomes too low, and that
this interrupt causes the processors to stop all processing
except for that which is necessary to free memory (and
incoming I/O). We now examine this approach in more
detail. Suppose that the physical memory consists of P
pages, i.e., that the memory can hold only P uncompressed
pages. If, under compression, the system has more than P
pages, the system is exposed to a potential out-of-memory
condition. For GFP, the system must be able, through a
series of steps, to reduce the number of pages in use to P.

(This places a limit on the number of pinned pages.) The
difficulty is that, while performing pageouts, physical
memory usage might actually increase for a period of time
due to L3 castouts, and the fact the system data structures,
such as page tables, might become less compressible as they
are modified during the pageout process. For GFP, the
memory controller must signal the interrupt when there is
still enough free memory so that the system does not run
out of memory, even in the worst-case expansion during
pageouts.

Suppose the controller signals a low-memory interrupt
when the amount of free physical memory drops below
some extreme low-memory threshold T1. Upon receipt of
this interrupt, all “nonessential” processing is halted as
soon as possible. (By nonessential, we mean any activity
that is unrelated to either incoming I/O or the freeing
of physical memory, which might already be in progress
since the system may have observed, or been alerted to, a
decrease in free memory prior to the extreme low-memory
threshold.) The OS then clears pages until the amount of
free memory exceeds some level T2 where T2 . T1.
When this “safe” level T2 is reached, the system is put in
a state where it can recover again if memory drops below
T1. Then normal processing can resume. If T1 is chosen
large enough so that the safe level T2 can always be
reached, the system has GFP. To analyze the required
level, let F1 denote the worst-case expansion until the
low-memory interrupt is recognized by the OS. Let F2
denote the worst-case expansion from the time the
interrupt is recognized on all processors until all
nonessential processing is halted and the required number
of pageouts are performed. We then require that

T1 $ F1 1 F2.

If the above equation is satisfied, GFP is ensured, since
there is always enough memory to achieve an increase in
free memory (this is the subject of a pending U.S. patent
application [22]). We now consider the terms F1 and F2
in more detail. F1 is the expansion possible until the
interrupt is recognized on all processors. When the
interrupt is generated, there is a small (worst-case) time
delay, t1 (seconds), until it is received at the processors.
Upon receipt, if interrupts are not disabled, an interrupt
routine is entered (all activity up to this instant is included
in F1). However, if the OS is executing a critical piece of
code, it may be running with interrupts disabled. Let t2
denote the maximum length of time the OS can run with
interrupts disabled. Thus, the interrupt is recognized by
time (t1 1 t2), and if the maximum number of L3
writebacks is w per second,

F1 # ~t1 1 t2! 3 w 3 k bytes.

Notice that the factor k, the compression line size, is used
in this equation rather than l, the L3 line size; each L3

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 P. A. FRANASZEK ET AL.

253

writeback of l bytes might cause memory utilization to
increase by k bytes.

Now consider F2, the time to stop all nonessential
processing and perform pageouts. (One way to accomplish
this is for the OS to dispatch “null tasks” on all but one of
the processors in an SMP; pageouts are performed on the
reserved processor.) We decompose F2 into the following
three components:

● I, the space required for all I/O operations.
● F3, the worst-case expansion due to changes in

compressibility of system data structures (such as
page tables) during processing in this phase.

● C, the worst-case expansion due to cache-flush
effects.

We thus write

F2 5 I 1 F3 1 C.

First, consider I, the space required for I/O. Suppose
the OS has permitted I/O for p pages to commence. These
pages may occupy no space in physical memory (except for
the directory entry) and so at least p 3 Bp bytes must be
reserved. Thus,

I # p 3 Bp.

Now consider F3. Suppose the total number of distinct
L3 lines (the “footprint”) of the software that can execute
in this phase is n2, but only n3 lines of these can be
modified. Such lines might consist of page-table entries,
dispatcher data structures, or data structures in I/O
drivers. Since the current compressibility of these n3 lines
is unknown, in the worst case they could occupy no space
in physical memory and expand completely during
processing. Thus,

F3 # n3 3 k.

Finally, consider C, the maximum expansion due to
cache-flush effects. Each of the above n2 lines may
displace a line that is already in the cache. In addition, if
I/O flows through the L3 cache, I/O reads and writes may
displace lines already in the cache. Suppose that the p
pages for I/O represent n1 L3 lines; then (n1 1 n2) lines
may be displaced from the L3 cache. However, if the total
L3 size is N3 lines, the cache-flush effect is limited to at
most N3 lines [since the second time a physical line in the
cache is flushed, it is at worst writing back one of the
(n1 1 n2) lines for which worst-case expansion space
has already been reserved]. Thus,

C # min @N3, ~n1 1 n2!# 3 k.

Combining the above upper bounds on F1, F2, F3, I,
and C yields a lower bound on the threshold T1 required
for GFP. Note that this bound depends on a variety of

hardware- and software-related quantities, including the
maximum time the OS can run with interrupts disabled
and the maximum footprint of the pageout software. In
particular, the term n2 might be quite large. For example,
in Microsoft Windows NT (see [23]), the usual pageout
code involves having the OS “trim” working sets, which is
accomplished by scanning the page tables of processes,
changing page-table entries (resulting in possible
expansion), and executing pageout code. To improve on
such a large factor, it is desirable to implement a special
low-footprint data structure, called an outlist, consisting of
clean pages (i.e., pages for which a valid copy exists on
disk) which can easily be zeroed (this is the subject of a
pending U.S. patent application [20]).

The outlist is a software construct allowing physical
space recovery by an interrupt handler or by a service
processor, outside the context of OS virtual-memory
management. Pages can be invalidated and cleared
without the usual locks on page tables and page-frame
databases. This approach reduces the amount of physical
space that must be reserved to permit working set
trimming and pageouts. The outlist is a list of clean pages
that can immediately be cleared, avoiding the need for a
general traversal of page tables and paging I/O. Every
page on the outlist is marked invalid, so that it cannot be
accessed or modified without OS intervention. We may
thus think of the outlist as representing a subset of a
traditional “reclaim” list (the “standby” list in Windows
NT). Normal maintenance of the outlist (when there is no
space shortage) requires a lock. However, when space is
an issue, the list may be traversed and pages cleared
without locking. The pages on the outlist must contain
adequate physical storage to enable the OS to trim, page
out, and return to normal operation; i.e., once the pages
on the outlist are cleared, the OS has enough space to run
the usual paging code to increase the number of clean
pages in the system, and to replenish the outlist with clean
pages before returning to normal operation. The outlist
itself could be organized as a hash table, keeping its
memory footprint small and its processing overhead at a
minimum. The effect of this approach is that the terms n2
and n3, which contribute to F3 and C, can be reduced;
i.e., the system can have GFP and run with lower free-
space reserves.

An outlist entry contains the page number, a count of
physical space used, and a presence flag. Normal outlist
maintenance is done within the context of the OS virtual-
memory manager; the state of pages in the outlist is
kept consistent with the page tables and page-frame
database. Atomically updating the page presence flag
provides coordination between an interrupt handler
recovering space and outlist maintenance code in
the OS.

P. A. FRANASZEK ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

254

There are three types of operations on the outlist:

● Normal: additions and deletions of pages done in the
context of the virtual memory manager.

● Flush: clearing of pages on the outlist by the interrupt
handler or service processor to recover physical
space.

● Sweep: before resuming normal operation, updating of
page tables and page-frame database to reflect flush
operations.

The total physical space consumed by the pages of the
outlist, F0, is atomically adjusted as pages are added,
removed, or cleared. If F0 drops below the minimum
required to run the paging manager, new pages must
be added to the outlist. Notice that this is significantly
different than keeping the amount of physical free space
at least equal to the paging manager’s footprint, since the
pages on the outlist can still be accessed (after a software
interrupt).

Even with the outlist, GFP depends on having some
information about the maximum footprint of certain
software code paths, which might be difficult to obtain
in practice. One way to reduce this uncertainty is to
run the kernel (or key parts of it, such as the outlist)
uncompressed (this is the subject of a pending U.S.
patent application [24]). In this case, OS structures
cannot expand.

Normal operations
In addition to handling low-memory situations, the OS
must also manage physical memory efficiently as the
compression ratio changes. Essentially, the OS must be
able to reduce the number of used pages in the system
when free space begins to become low, and increase the
number of pages when it is plentiful.

We describe several issues associated with such
memory-management approaches, and in particular
address the question of how much memory the OS should
regard as “available.” The naive answer is to simply read
the register indicating the current amount of free memory;
if the measurement is taken at time t, call this number
F(t). While the OS could make decisions based solely on
F(t), some improvements are possible.

First, suppose the system keeps track of the amount of
space represented by pages on the reclaim list, R(t). As its
name suggests, this space can easily be freed, so the OS
could consider such space as available and base decisions
on both the actual level of free space, F(t), and an estimate
of the amount of available space A(t) 5 F(t) 1 R(t).
That is, in addition to a threshold-control policy on
just F(t), a parallel, cooperating threshold-control
policy on A(t) can be implemented. For example,
if A(t) exceeds some threshold [and F(t) is not too low],

the OS can satisfy a request for a new page by supplying a
page-frame ID from either the free or the zeroed-page
lists (if any). As A(t) drops below some other threshold,
new page requests can be satisfied by taking the page-
frame ID off the reclaim list; on average, this keeps the
compression ratio the same. If A(t) continues to drop,
A(t) can be increased by building up the reclaim list
(through pageouts). This parallels traditional OS policies
that track and control the number of page frames in use.
It further helps to ensure an adequate supply of easily
freed space as F(t) decreases, thereby reducing the
chances of a low-memory interrupt.

In MXT, a potential source of rapid memory expansion
occurs when the OS has recently given out many new
pages from the zeroed-page list. When first given out, such
a page occupies no space in physical memory. In fact,
immediately after such a page is given out, the estimated
compression ratio actually improves, since the amount of
memory used is unchanged but the number of used page
frames increases. It is only as the lines from such a new
page age out of the L3 that they begin to occupy space in
memory. If there are many such pages, a naive policy
would conclude that even more pages can be given out,
since the average compression ratio has improved.
Because of the time delays involved, it is therefore
possible to overcommit memory if many new pages have
recently been given out. One way to counteract this
situation is described in [25], in which the notion of
“allocated but unused” storage is introduced. Here,
the estimated amount of available storage is given by
A(t) 5 F(t) 1 R(t) 2 v(t), where v(t) is an estimate of the
allocated but unused storage. If many pages have recently
been given out, v(t) tends to be large, and the system’s
estimate of available space is reduced (thereby reducing
the chances of overcommitting memory). A dynamic
method of estimating v(t) is described in [25]; each new
page grant initially increases v(t), representing increased
potential memory usage while the page’s lines are still in
the cache (and not reflected in physical memory). This
increase in potential memory usage is decreased over time
as the page’s lines are expected to age out of the cache
(and be reflected in physical memory). This method is
efficient, and simulation studies have indicated that it is
reasonably accurate.

Compressibility is expected (and has been observed)
to vary as the workload changes, e.g., when loading new
applications. However, for certain long-running workloads,
it has been observed that compressibility remains quite
stable; Reference [26] describes the dynamic behavior
of a logic-simulation application running under MXT.
Thus, while appropriate OS controls on compression are
required, for stable workloads we expect those controls to
be essentially inactive most of the time. In the Appendix,

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 P. A. FRANASZEK ET AL.

255

we describe several stochastic models that help to explain
this behavior and give a qualitative description of the
types of fluctuations expected to be observed.

Finally, we briefly describe current software written for
MXT [26]. These include a Linux in-kernel modification
and an out-of-kernel Windows NT (and Windows**
2000) driver. In both cases, the amount of available
physical memory is monitored and actions taken when
compressibility changes. The amount of free space held in
reserve is determined heuristically; there is no guarantee
of forward progress. Of particular interest is the Windows
2000 driver. The driver keeps a number of pinned and
zeroed pages in reserve. (Pinned pages cannot be removed
by the OS, and zeroed pages occupy no physical space in
MXT.) If physical memory is plentiful, the driver returns
some of these pages to the OS for use by other programs.
If free space becomes scarce, the driver obtains, zeros,
and pins additional pages. Experiments indicate that these
approaches work well, but this is an area requiring
additional research and experimentation.

5. Summary and conclusions
The IBM MXT compression/decompression hardware
permits the size of main memory to be effectively doubled
with little or no performance impact by storing most of
main memory in compressed format. To conceal the
performance penalty associated with compression and
decompression, compressed memory is hidden behind a
large L3 cache. The hardware compresses a line on
writeback from the L3 and decompresses the line on
access before loading it into the L3. Efficient support
of such a system requires new algorithms, machine
organizations, and data structures. This paper has
provided an overview of several key advances that have
enabled development of the efficient MXT hardware and
given insight into effective OS support of compressed-
memory machines. Among these advances are the following:

1. Fast parallel compression/decompression algorithms
that are suitable for implementation in hardware. In
MXT, the degree of parallelism for both compression
and decompression is 4.

2. Efficient methods of addressing and storing compressed
data in memory. A compression translation table (CTT)
in the memory controller provides a real-to-physical
address translation that enables application programs
to run unmodified; i.e., compression is completely
transparent to all applications. The CTT is organized in
such a way that fragmentation of memory is minimal
and garbage collection is unnecessary. In MXT, the
compression line size is 1 KB, equal to the L3 line size,
and compressed memory is stored in 256-byte blocks.
Fragments from two different lines in the same 4KB
page can share a segment (two-way combining with a

cohort size of 4). Lines compressing to less than
120 bits are stored in the CTT itself.

3. Several software-memory-management approaches
which guarantee that the system does not encounter
an out-of-memory condition due to rapid changes in
compressibility. These approaches require that a certain
quantifiable amount of free memory be maintained in
reserve. A new data structure, the outlist, reduces this
reserve requirement. While these approaches have
not been directly implemented in the system-support
software for MXT, the principles underlying guaranteed
forward progress (GFP) have been influential in the
design of this software.

We continue to investigate issues related to main-
memory compression and to develop improvements over
the current MXT implementation. For example, a machine
organization in which the amount of memory stored in
uncompressed format is variable and changes dynamically
with the compression ratio is described in [27]. In such a
system, if compression is better than expected, more lines
can be stored uncompressed, thereby further reducing
decompression latency.

Appendix: Stochastic models of compressibility
First, suppose that the memory consists of N lines and
consider the compression ratio at two distinct times. Let
Xn be the change in the compression ratio of the nth line
during the time interval. Then the change in compression
ratio is #XN 5 (X1 1 . . . 1 XN)/N. We model {Xn} as
a random process. If the workload is stable, then, on
average, compressibility does not change, so E[Xn] 5 0. In
addition, under broad assumptions on stationary processes
which basically state that the correlation between Xn and
Xn1k drops off rapidly enough for large k (e.g., if {Xn} is a
Markov chain), #XN obeys a central-limit theorem for large
N; that is, #XN is approximately normally distributed with
mean 0 and standard deviation s/=N for some constant
s which includes the effect of correlation (see p. 375 of
[28]). Thus, we expect the change in compression ratio to
be of order 1/=N with high probability. In fact, under
somewhat stronger conditions a “large deviations”
principle holds, which states that for any constant a . 0
representing a change in compression ratio, there is a
constant t (depending on a) such that

P$u #XNu . a% # exp {2tN 1 O~N!};

i.e., the probability of a large change in compression ratio
is exponentially small (see p. 15 of [29]).

A second model of compressibility relies on statistical
results on sampling from a finite population (see [30]).
Consider a system such as a database consisting of M
pages and suppose that the compression ratio of these
pages is c. Now suppose that the main memory contains

P. A. FRANASZEK ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

256

some number N , M of these pages, and let f 5 N/M be
the fraction of the database that is in memory. Let cN be
the compression ratio of the pages in memory. If the
pages in memory represent a random sample of the entire
database, then cN has mean c and variance (1 2 f)S 2/N,
where S 2 is the sample variance of the compression ratio
of all of the pages in the database. In addition, for large
M, cN is approximately normally distributed with the
above mean and variance. Thus, the compression ratio of
the memory will again have fluctuations about c which are
of order 1/=N with high probability.

Acknowledgments
The authors wish to acknowledge valuable interactions
with C. Benveniste, J. D. Brown, M. Hack, C. O. Schulz,
T. B. Smith, R. B. Tremaine, and M. Wazlowski. Jeff
Brown first brought the topic of compressed-memory
systems to our attention; Michel Hack and Charles
Schulz collaborated on adapting our results on memory
organization to the MXT architecture described elsewhere
in this issue. Michel Hack, Charles Schulz, and Basil
Smith participated in many lively discussions on operating
system questions. Their contributions are partially
described elsewhere in this issue, and in Reference [21].
Brett Tremaine and Michael Wazlowski provided valuable
grounding on questions of hardware practicality, as well as
data used, for example, in Reference [25].

*Trademark or registered trademark of International Business
Machines Corporation.
**Trademark or registered trademark of Microsoft
Corporation.

References
1. R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O.

Schulz, T. B. Smith, M. E. Wazlowski, and P. M. Bland,
“IBM Memory Expansion Technology (MXT),” IBM J.
Res. & Dev. 45, No. 2, 271–285 (2001, this issue).

2. A Technical Guide to ESA/390 Compression, Document
No. GG24-4130-00, IBM International Technical Support
Center, Poughkeepsie, NY, April 1994.

3. T. M. Kemp, R. K. Montoye, J. D. Harper, J. D. Palmer,
and D. J. Auerbach, “A Decompression Core for
PowerPC,” IBM J. Res. & Dev. 42, No. 6, 807– 812 (1998).

4. M. Kjelso, M. Gooch, and S. Jones, “Performance
Evaluation of Computer Architectures with Main Memory
Data Compression,” J. Syst. Arch. 45, 571–590 (1999).

5. S. F. Kaplan, “Compressed Caching and Modern Virtual
Memory Simulation,” Ph.D. Thesis, University of Texas
at Austin, December 1999.

6. J.-S. Lee, W.-K. Hong, and S.-D. Kim, “Design and
Evaluation of a Selective Compressed Memory System,”
Proceedings of the International Conference on Computer
Design, IEEE, 1999, pp. 184 –191.

7. J. R. MacDonald, D. Dutton, and S. Cox, “Memory
Paging System and Method Including Compressed Page
Mapping Hierarchy,” U.S. Patent 5,696,927, December 9,
1997.

8. F. Douglis, “The Compression Cache: Using On Line
Compression to Extend Physical Memory,” Proceedings
of the Winter 1993 USENIX Conference, USENIX
Association, San Diego, 1993, pp. 519 –529.

9. W. P. Hovis, K. H. Haselhorst, S. W. Kerchberger, J. D.
Brown, and D. A. Luick, “Compression Architecture for
System Memory Applications,” U.S. Patent 5,812,817,
September 22, 1998.

10. J. Storer and T. Szymanski, “Data Compression via
Textual Substitution,” J. ACM 29, No. 4, 928 –951 (1982).

11. J. Ziv and A. Lempel, “A Universal Algorithm for
Sequential Data Compression,” IEEE Trans. Info. Theory
IT-23, No. 3, 337–343 (1977).

12. B. Tunstall, “Synthesis of Noiseless Compression Codes,”
Ph.D. Thesis, Georgia Institute of Technology, Atlanta,
September 1967.

13. T. C. Bell, J. G. Cleary, and I. H. Witten, Text
Compression, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1990.

14. D. Craft, “A Fast Hardware Data Compression Algorithm
and Some Algorithmic Extensions,” IBM J. Res. & Dev. 42,
No. 6, 733–746 (1998).

15. P. Franaszek, J. Robinson, and J. Thomas, “Parallel
Compression with Cooperative Dictionary Construction,”
Proceedings of the DCC ’96 Data Compression Conference,
IEEE, 1996, pp. 200 –209.

16. P. Franaszek, J. Robinson, and J. Thomas, “Parallel
Compression and Decompression Using a Cooperative
Dictionary,” U.S. Patent 5,729,228, March 17, 1998.

17. P. A. Franaszek, “System and Method for Reducing
Memory Fragmentation by Assigning Remainders to
Share Memory Blocks on a Best Fit Basis,” U.S. Patent
5,761,536, June 2, 1998.

18. P. A. Franaszek, “A System and Method of Compression
and Decompression Using Store Addressing,” U.S. Patent
5,864,859, January 26, 1999.

19. P. A. Franaszek and J. T. Robinson, “On Internal
Organization in Compressed Random-Access Memories,”
IBM J. Res. & Dev. 45, No. 2, 259 –270 (2001, this issue).

20. P. A. Franaszek and D. E. Poff, “Reclaim Space Reserve
for a Compressed Memory System,” IBM patent
application, August 2000.

21. P. A. Franaszek, M. Hack, C. S. Schulz, and T. B. Smith,
“Space Management in Compressed Main Memory,” IBM
patent application, August 1996.

22. P. A. Franaszek and P. Heidelberger, “Compression Store
Free-Space Management,” IBM patent application,
February 1998.

23. D. A. Solomon, Inside Windows NT, Second Edition,
Microsoft Press, Redmond, WA, 1998.

24. P. A. Franaszek, P. Heidelberger, and D. E. Poff, “Kernel
Identification for Space Management in Compressed
Memory Systems,” IBM patent application, November
1998.

25. P. Franaszek, P. Heidelberger, and M. Wazlowski, “On
Management of Free Space in Compressed Memory
Systems,” Proceedings of the International Conference on
Measurement and Modeling of Computer Systems, ACM,
1999, pp. 113–121.

26. B. Abali, H. Franke, D. E. Poff, R. A. Saccone, Jr.,
C. O. Schulz, L. M. Herger, and T. B. Smith, “Memory
Expansion Technology (MXT): Software Support and
Performance,” IBM J. Res. & Dev. 45, No. 2, 287–302
(2001, this issue).

27. C. Benveniste, P. Franaszek, and J. Robinson, “Cache-
Memory Interfaces in Compressed Memory Systems,”
Research Report RC-21662, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, February 4,
2000.

28. P. Billingsley, Probability and Measure, Second Edition,
John Wiley & Sons, Inc., New York, 1986.

29. J. A. Bucklew, Large Deviations Techniques in Decision,
Simulation, and Estimation, John Wiley & Sons, Inc., New
York, 1990.

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 P. A. FRANASZEK ET AL.

257

30. W. G. Cochran, Sampling Techniques, Third Edition, John
Wiley & Sons, Inc., New York, 1977.

Received September 13, 2000; accepted for publication
March 26, 2001

Peter A. Franaszek IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (paf@us.ibm.com). Dr. Franaszek received
the Ph.D. degree in electrical engineering from Princeton
University in 1965. From 1965 to 1968, he was employed by
Bell Laboratories. He joined the IBM Research Division in
1968. During the academic year 1973–1974, he was on
sabbatical leave at Stanford University as Consulting
Associate Professor of Computer Science and Electrical
Engineering. He is currently Manager of Systems Theory and
Analysis. His interests are in the general area of information
representation and management, and computer system
organization. Dr. Franaszek has received two IBM Corporate
Awards for his work on codes for magnetic recording, an IBM
Corporate Patent Portfolio award for his contribution to the
ESCON architecture, and Outstanding Innovation Awards
for fragmentation-reduction algorithms, network theory,
concurrency-control algorithms, run-length-limited codes,
and the code used in ESCON, Fiber Channel, and Gigabit
Ethernet. He is a member of the IBM Academy of
Technology and a Master Inventor. He is a Fellow of the
IEEE, and received the 1989 Emmanuel R. Piore Award from
the IEEE for his contributions to the theory and practice of
constrained channel coding in digital recording. Dr. Franaszek
holds thirty-six patents and has published more than forty
technical papers.

Philip Heidelberger IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (philiph@us.ibm.com). Dr. Heidelberger received
a B.A. degree in mathematics from Oberlin College in 1974
and a Ph.D. degree in operations research from Stanford
University in 1978. He has been a Research Staff Member at
the IBM Thomas J. Watson Research Center in Yorktown
Heights, New York, since 1978. His research interests include
modeling and analysis of computer performance, probabilistic
aspects of discrete-event simulations, and parallel simulation.
He has won Best Paper awards at the ACM SIGMETRICS
and ACM PADS (Parallel and Distributed Simulation)
Conferences, and he was twice awarded the INFORMS
College on Simulation’s Outstanding Publication Award.
Dr. Heidelberger has recently served as Editor-in-Chief
of the ACM’s Transactions on Modeling and Computer
Simulation. He is the General Chairman of the ACM
SIGMETRICS/Performance 2001 Conference and has served
as the Program Chairman of the 1989 Winter Simulation
Conference and as the Program Co-Chairman of the ACM
SIGMETRICS/Performance ’92 Conference. He is a Fellow
of the ACM and the IEEE.

Dan E. Poff IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (poff@us.ibm.com). Mr. Poff is a Systems Programmer
at the IBM Thomas J. Watson Research Center, where he
designs and develops MXT software compression controls.
Before joining the Research Center in 1982, he programmed
logic chip testers at IBM in East Fishkill, New York. At
the Watson Research Center, he first joined a group that
developed IBM’s first port of UNIX to the first RISC

machine, then assisted in porting Carnegie Mellon
University’s MACH to an early SMP RISC machine. He
subsequently assisted in porting MACH to RS/6000. In the
early 1990s he joined a group porting Windows NT to the
IBM PowerPC. He has received an IBM Outstanding
Technical Achievement Award. Mr. Poff received an M.A.
degree in history and philosophy of science from Indiana
University in 1969 and a B.S. degree in physics from the
University of Cincinnati in 1964. He has five patents pending
and several publications, and he is a member of the ACM.

John T. Robinson IBM Research Division, Thomas
J. Watson Research Center, P.O. Box 218, Yorktown
Heights, New York 10598 (robnson@us.ibm.com;
http://www.research.ibm.com/people/r/robnson/). Dr. Robinson
received the B.S. degree in mathematics from Stanford
University in 1974, and the Ph.D. degree in computer science
from Carnegie Mellon University in 1982. Since 1981, he has
been with the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York. His research interests include
database systems, operating systems, parallel and distributed
processing, design and analysis of algorithms, and hardware
design and verification. He is a member of the ACM and the
IEEE Computer Society.

P. A. FRANASZEK ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

258

