
by P. A. Franaszek
J. T. RobinsonOn internal

organization
in compressed
random-access
memories

The design of a compressed random-access
memory (C-RAM) is considered. Using a
C-RAM at the lowest level of a system’s main-
memory hierarchy, cache lines are stored
in a compressed format and dynamically
decompressed to handle cache misses at the
next higher level of memory. The requirement
that compression/decompression, address
translation, and memory management be
performed by hardware has implications for
the directory structure and storage allocation
designs used within the C-RAM. Various new
approaches, summarized here, are necessary
in these areas in order to have methods that
are amenable to hardware implementation.
Furthermore, there are numerous design
issues for the directory and storage
management architectures. We consider a
number of these issues, and present the
results of evaluations of various approaches
using analytic methods and simulations. This
research was done as part of a project to
explore the feasibility of compressed-memory
systems; it forms the basis for the memory
organization of IBM Memory Expansion
Technology (MXT).

1. Introduction
With higher processor speeds but a lack of a
corresponding speedup in disk access, the tendency in
server-class computers is toward increasingly large main-
memory size in proportion to processor speed. A result
is the expectation that memory will be a dominant cost
factor in the central electronic complex, comprising in the
near future possibly fifty to ninety percent of the cost of
typical large machines, despite the usual trends in decreasing
memory cost. A possible approach to mitigating this cost
is to compress the contents of main memory. It is well
known that such contents are generally compressible by a
factor of 2 or better, and some commercial programs have
been available to exploit this fact (for example, see [1]).
Such observations have led to the consideration of systems
in which the contents of main memory are maintained in
compressed form, and decompressed/compressed on a
page basis (for example, see [2, 3]). However, when the
unit of compression is a cache line (that is, cache lines in
main memory are decompressed on misses and recompressed
on writebacks), it is necessary to develop some new
technology in order to obtain a practical system. Here we
describe results associated with the development of IBM
Memory Expansion Technology (MXT) [4]. These results
form the basis for the design of the compressed-memory
organization of MXT (for additional details see [5–7]).

rCopyright 2001 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/01/$5.00 © 2001 IBM

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 P. A. FRANASZEK AND J. T. ROBINSON

259

First, very fast compression/decompression hardware is
required, permitting operation at main-memory bandwidths.
There has been some progress in this direction, based on
extensions to Lempel–Ziv (LZ) methods. In particular,
parallel, shared-dictionary techniques [8], implemented
using content-addressable memory (CAM), permit effective
compression/decompression at main-memory bandwidths.
A serial approach, but based on a larger alphabet of
multiple byte entries [2], also offers some speedup over
standard LZ approaches.

Next, changes in memory management must be made to
the operating system, since with compression, the logical
total main-memory size may vary dynamically. Issues
associated with such management are discussed in [9].
Finally, a way must be found to efficiently store and access
the variable-length objects obtained from compression.
This problem is the main topic of the current paper. We
consider the design of a compressed random-access
memory (C-RAM) with the following properties:

1. Logically, the memory M consists of a collection of
randomly accessible fixed-size lines, where L is the
line size.

2. Internally, the ith line is stored in a compressed format
as L(i) bytes, where L(i) # L, and where L(i) may
change on each cache cast-out of this line. L(i) # L
is ensured by the capability of storing lines in an
uncompressed format with suitable directory
entries.

3. M comprises a standard random-access memory with
a minimum access size (granule) of g bytes. We will
generally assume that g is 32.

4. Memory accesses invoke a translation between a
logical line address and an internal address. This
correspondence is stored in a directory D contained in
M. Translation, fetching, and memory management
within the C-RAM are carried out by a memory
controller rather than by operating system (OS)
software.

Use of the directory D to access memory generally
implies an added level of addressing indirection, requiring
an additional memory fetch. Also, the compressed format
may require some average additional latency to handle
misses from the next higher level in the memory hierarchy.
As described below, this latency can be traded off against
compression by varying the line size; sizes in the range
of 512 to 1024 bytes appear suitable. Line sizes of this
magnitude may require a third level of caching (L3), one
more than is typical for many of today’s systems. However,
L3 caches may be necessary in any case (even without
compression), since it is difficult to bring substantially
larger memories uniformly close to the processors. The
result is that with typical anticipated L3 miss ratios, we
expect that average memory access latency will not be
significantly affected by the use of a C-RAM for main
memory. In the following, we generally assume an L3
line size L of 1024 bytes. The value for L was chosen
via a combination of compression results using shared-
dictionary parallel compression [7] and estimated L3
cache-miss latencies. An overview of the system structure,
showing the L3 cache and the compressed main memory,
is given in Figure 1.

Three classes of techniques for managing a memory
of the above type are 1) organizing M to be a linear
space, where variable-length intervals are allocated and
deallocated; 2) organizing M as a collection of blocks of
possibly multiple sizes, where space for a variable-length
object is allocated as an integral number of such blocks;
and 3) organizing M as a collection of blocks, but
permitting a variable amount of space to be allocated
within a block. The techniques we investigate here are of
the third type. We use blocks of a single fixed size, and
compressed lines are allocated some integral number
of blocks, with leftover pieces (termed fragments) from
possibly multiple lines sharing an additional block. A line
fragment shares a block with line fragments drawn from a
“cohort” of other lines. The smaller the cohorts, the fewer
the memory operations required to store a line, but the
larger the potential fragmentation. This is also true for the
number of line fragments permitted to share a block. A
principal observation is that the size of the cohorts and
the number of lines allowed to share a block can be quite

Figure 1

CPU(s)

L1(s)

L2(s)

L3 cache

Comp/decomp

Compressed
main memory

System structure overview.

P. A. FRANASZEK AND J. T. ROBINSON IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

260

small, with low resulting fragmentation. The result is that
the technique is of low complexity, and is suitable for
implementation in hardware.

2. Design overview
A high-level design for a system using a C-RAM for the
lowest level of the main-memory hierarchy is shown in
Figure 2. As discussed in the Introduction, we assume that
the C-RAM memory M is used to read and write lines
resulting from cache misses and stores, respectively, at
the next higher level of memory in the memory hierarchy,
shown as L3 in Figure 2. The C-RAM memory consists of
two parts, the directory D and a collection of fixed-size
blocks. Highly compressible lines may be stored entirely
within directory entries. Otherwise, the directory entry
points to one or more of the fixed-size blocks, which are
used to store the line in its compressed format. In the
case that fragments from two or more lines are combined
and stored in a common block, the directory entries
corresponding to the given lines also contain the
information necessary to find the fragments.

As usual, virtual addresses are translated to real
addresses by means of page tables, which can be of
various types depending on details of the processor
architecture and operating system. Here, a “real” address
corresponds to the location in D of the directory entry
for the line.

As an example, suppose that pages are of size 4 KB,
and that the L3 cache immediately above the C-RAM has
a line size of 1 KB. In contrast to the usual type of page-
table design, when a virtual address is translated, the
result is used not only as an associated real memory
address, but also as a pointer or an index to an entry in
the C-RAM directory D. Compressed lines that do not fit
entirely within directory entries are stored using one or
more fixed-size blocks, which for this example we assume
to be of size 256 bytes (the issue of choosing an optimal
block size is discussed in Section 5). Each directory entry
contains flags, fragment-combining information, and
pointers for up to four blocks. At most four blocks are
required, since we assume that if a given line does
not compress (in general, this is always a possibility
given a fixed compression method), it is stored in an
uncompressed format, as indicated by a flag in the
directory entry. Finally, sufficiently compressible lines are
stored in the directory entry itself (as indicated by another
flag bit), in which case no blocks need be allocated.

On an L3 cache miss, the memory controller and
decompression hardware find the blocks allocated to store
the compressed line and dynamically decompress the line
to handle the miss. Similarly, when a new or modified line
is stored, the blocks currently allocated to the line are
made free (if the line currently resides in the C-RAM),
and the line is then compressed and stored in the C-RAM

by allocating the required number of blocks. As this is
done by hardware, under normal operation the fact that
main memory is compressed is transparent to the OS.

Given the parameters above (1KB lines and 256-byte
blocks), consider the following scenario: Suppose each
line compresses to 1, 2, 3, . . . , or 1024 bytes, with equal
likelihood. Then the expected compressed line size is
512.5 bytes; that is, compression is almost exactly 50%
(50.05%). However, if some number of full blocks is used
to store each line, it is easily seen that the expected
number of blocks required to store a line is 2.5. This gives
a compression of 62.5%, significantly worse than 50%.
One way to address this problem is to make block sizes
smaller. However, if block sizes are significantly smaller,
the size of the directory can increase dramatically.
Another approach to reducing storage fragmentation
is to combine two or more fragments, that is, the “left-
over” pieces in the last blocks used to store compressed
lines, into single blocks.

In order to make fragment combining feasible using
a hardware-based memory controller, and in particular
to provide a guarantee of the maximum latency, some
constraint must be made on the sets of lines for which
fragment combining is allowed. We will call a set of lines
for which fragment combining is allowed a cohort. In

Figure 2

L3 and C-RAM organization.

C-RAM

Line 1

Line 2

Line 3
Line 4

D

A1

A2

A3
A4

Line 2

Line 3

Line 4

(BLOCKS)

Decompressor Compressor

READ WRITE M

L3

L3 directory

(L3 cache lines)

(Address)

(Miss) (Store)

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 P. A. FRANASZEK AND J. T. ROBINSON

261

order to have a small upper bound on the time required
for directory scans, ideally the size of cohorts should be
small. In subsequent sections we look at cohort sizes
ranging from 2 to 16 lines. Another design issue is the
fashion in which cohorts are determined. Here there are
two general approaches: partitioned cohorts and sliding
cohorts.

In a partitioned-cohort approach, lines are divided into
a number of disjoint sets (all of a given fixed size, the
cohort size), where each such set is a cohort. For example,
with a cohort of size 2, the first two 1KB lines in each
4KB page could form one cohort and the last two lines
another cohort. Similarly, grouping lines by pages, all of
the lines in each page give cohorts of size 4; all of the
lines in two consecutive pages give cohorts of size 8; and
so on.

In contrast, in a sliding-cohort design, cohorts are not
disjoint, but overlap. For example, with a cohort of size 4,
the cohort corresponding to any given line could consist of
the set containing that line and the previous three lines,
and similarly for other cohort sizes. The motivation for
considering this type of design is the following. In a
partitioned-cohort design with a cohort size of 4, as each
successive line is stored sequentially, the average number
of lines already stored for which combining is possible
is 1.5. In a sliding-cohort design, however, again with a
cohort size of 4, assuming that the lines in the previous
page have already been stored, each successive line
always has three other lines with which it can potentially
combine. This suggests that this design might yield
decreased fragmentation.

Another issue is the method by which fragments are
combined. First, there is a question of the number of
fragments that can be combined in a block. From a
hardware point of view, the simplest case is to allow only
two fragments per block. However, if significant gains
would be realized by allowing three-way or greater
combining, the increased complexity might be acceptable.
Also, given a fragment and the sizes and locations of
other fragments in the cohort for which combining is
possible, which fragment (or fragments) should be chosen?
Two options are to use first-fit or best-fit methods. We
also study some other methods primarily for the sake of
comparison, since they are impractical to implement in
hardware. These are 1) fragment catenation, in which all
of the fragments in a cohort are catenated, with fragments
crossing block boundaries as necessary; and 2) optimal fit,
in which (assuming two-way combining, for example) all
possible ways of combining the fragments in a cohort are
exhaustively examined, and the one yielding the minimal
number of blocks is selected.

Finally, there are design issues related to choice of
block size, which we consider in Section 5, and to the
design of the directory structure. Here we present an

overview of directory structure design; for more details,
including possible directory-entry formats, addressability
issues, etc., see Section 3 of [5]. There are two types of
directory structures. The first is static, and is configured
so as to have the required number of entries to support
a maximum compression factor of F (where F is greater
than 1, with 1/F the compression expressed as a fraction).
That is, if the C-RAM has a capacity of N uncompressed
lines, the directory contains entries for FN lines. Thus, for
example, if F were 2 (i.e., 50% compression), D would
contain entries for 2N lines. A possible problem with this
type of design is that the maximum compression is limited
to a predetermined value: If the contents of memory at
some point are more compressible, this cannot be taken
advantage of to provide more real memory. On the other
hand, if compression is significantly less than this value,
there is wasted directory space. These problems can
potentially be avoided by the second type of structure
we consider, in which the directory is dynamic.

Using a dynamic directory structure, directory entries
are created (deleted) whenever real addresses are
allocated (deallocated). In this case, free main-memory
blocks could be allocated (deallocated) and used for the
directory entries for one or more pages whenever the
pages were created (deleted). Here, we are assuming that
real memory increases (decreases) in units of at least a
page. In this case, a pointer or index to the C-RAM
directory entries for the page or pages would be
maintained as part of the real address by the OS in a
page-table entry. An interesting property of the 128-byte
block case is that, assuming directory-entry formats as
described in [5], one 128-byte block is exactly the right
size to hold the four directory entries for the four lines of
the page, provided that a maximum physical-memory
addressability of 256 GB is sufficient (the maximum logical
real-memory addressability would be F times as much, for
example 512 GB for F 5 2). The implication is that the
C-RAM memory could be uniformly divided into a collection
of 128-byte blocks, which could be allocated either as directory
entries or as blocks to hold compressed data, as required.

3. Uniformly distributed compressed lines
In this and the following section we consider approaches
to combining line fragments, that is, those parts of
compressed lines occupying a fraction of the last block
used to store the line, into single blocks. Issues include
the number of fragments to be combined, the way the
fragments are chosen, and whether combinations of
fragments within a cohort are reorganized.

We first study these issues assuming a uniform
distribution of compressed line sizes; in the next section
we present results based on memory dumps. In more
detail, with parameters as in previous examples (1KB
line sizes, 256-byte blocks), we assume that each line is

P. A. FRANASZEK AND J. T. ROBINSON IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

262

compressed to 1, 2, 3, . . . , or 1024 bytes, with equal
likelihood, independently of the compression of any other
line. Without fragment combining, each line therefore
compresses to 1, 2, 3, or 4 blocks, each with equal likelihood.

It is possible to derive some results for fragment
combining for some simple cases (such as for cohorts
of size 2) using analytic methods, where it is assumed
that each fragment size is a real-valued random variable
uniformly distributed on the unit interval, for example.
However, in practice, memory at the level of the C-RAM
in the memory hierarchy is accessed in certain minimum-
size units, which we call granules. For memories of the size
we are considering here, granules of size of the order of
32 bytes are appropriate. It is desirable for performance
reasons to store each fragment as a number of complete
granules. With 256-byte blocks and 32-byte granules, it
follows that the last block used to store a line, that is, the
fragment, consists of one to eight granules, with each size
equally likely.

With these assumptions, it is possible to compute
exactly the expected number of blocks used to combine
the fragments in a cohort, given the number of granules
per block, the fragment-combining method, the degree
of fragment combining, and the cohort size, simply by
examining all possible cases (providing the cohort size
is not too large). The expected number of blocks can
then be used to derive the expected compression.

In more detail, this is computed as follows. Assume that
the cohort size is 4 and that there are eight granules per
block, and let F(f1 , f2 , f3 , f4) be a function that computes,
for a given fragment-combining method, the number of
blocks required to combine four fragments of sizes f1 , f2 ,
f3 , and f4 (1 # fi # 8). Assuming a uniform independent
distribution of compressed line sizes as above, the
expected number of blocks used by a compressed line
not counting the last block is (0 1 1 1 2 1 3)/4 5 1.5.
The expected number of blocks used for the fragments
in the cohort, say X, is computed as follows:

X 5
1

8 4 O
1#f1#8

O
1#f2#8

O
1#f3#8

O
1#f4#8

F~ f1, f2, f3, f4!.

The expected compression, computed for the entire
cohort, is therefore

(compression) 5
256~1.5C 1 X !

1024C
,

where C 5 (cohort size) 5 4. This formula is the same for
any cohort size; however, for cohort sizes other than 4, the
formula for computing X is changed in the obvious way.

Compression results for two-way fragment combining
obtained using the above methods are shown in Table 1.
The methods used were fragment catenation (CAT), first-
fit (FF2), best-fit (BF2), and optimal-fit (OF2). As

previously described, catenation and optimal-fit are shown
only for comparison.

Exact results on expected compression, using the same
set of methods, were also obtained for three-way fragment
combining (up to three fragments are allowed to share a
block), as shown in Table 2 (results for the catenation
method, which of course does not depend on the degree
of fragment combining, are shown again for ease of
comparison).

First consider the results as compared to not using
combining. The expected compression using no combining
is obtained by setting X to 1 above, which gives 62.5%
(as in a previous example). Thus, combining gives a
substantial improvement, even for the simplest case, in
which the cohort is of size 2, in which the expected
compression is 57.03% (for a cohort of size 2, all
combining methods are equivalent, since there is
no choice for selection of fragments to combine).

Next, examining various combining results, we note that
first-fit, best-fit, and optimal-fit are essentially equivalent,
with best-fit giving at most a fraction of a percent in
compression improvement over first-fit, and optimal-fit
a slightly larger but still fractional percent improvement
over best-fit. Since optimal-fit is not suitable for an actual
implementation (it is included only as a bound), the
conclusion is that whichever method is easiest for use in a
hardware-based memory controller can be used with no
impact on performance. Note also that even if we remove
the constraint that fragments must be combined into
single blocks (i.e., the constraint that fragments not cross
block boundaries), as in the catenation method, there is

Table 1 Expected compression (%), two-way combining.

C CAT FF2 BF2 OF2

2 57.03 57.03 57.03 57.03
3 55.21 56.68 56.68 56.68
4 54.30 55.82 55.77 55.49
5 53.75 55.57 55.51 55.24
6 53.38 55.23 55.15 54.73
7 53.13 55.05 54.96 54.54
8 52.93 54.86 54.76 54.25

Table 2 Expected compression (%), three-way combining.

C CAT FF3 BF3 OF3

3 55.21 55.76 55.76 55.76
4 54.30 55.23 55.21 55.08
5 53.75 54.83 54.76 54.55
6 53.38 54.55 54.45 54.19
7 53.13 54.35 54.21 53.93
8 52.93 54.18 54.01 53.71

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 P. A. FRANASZEK AND J. T. ROBINSON

263

still only a modest improvement. Using catenation, we
obtain the best compression possible, subject to the
constraints that the entire cohort is stored as an integral
number of blocks and that each line is stored as an
integral number of granules. Although this is not practical
for a hardware-based memory controller, it is interesting
that practical methods such as two-way first-fit or best-fit
fragment combining do almost as well.

Next we examine the effects of cohort size and degree
of fragment combining. Consider the results for first-fit,
for example. The choice of cohort size and degree of
fragment combining have an impact on the complexity
and latency of operations for the memory controller.
With two-way combining, compression is slightly improved
(from about 55.8% to 54.9%) by increasing the cohort size
from 4 to 8; that is, less than one percent improvement
in compression performance is achieved. Increasing the
degree of fragment combining has even less of an effect.
Since we might expect this to be more significant for
larger cohort sizes, consider the first-fit results for a
cohort size of 8: By moving from two-way to three-way
fragment combining, compression is improved only
from about 54.9% to 54.2%. Overall, of the various
factors related to choosing a practical design, the most
improvement is seen when one moves up from a minimal
cohort of size 2 to larger cohort sizes.

Simulations were also used to investigate fragment-
combining methods. These were used to find average
compression for larger cohort sizes (up to 16), and also
validated the exact computation method results for smaller
cohort sizes. Furthermore, simulations permitted studies
of a C-RAM under steady-state conditions, in which after
filling the C-RAM with compressed lines (with randomly
generated sizes as above), lines were then selected
randomly (any line equally likely), the size of the
selected line changed to a new random value (again,
from 1 to 1024 bytes equally likely), and then recombined
(if possible) with the other lines in its cohort. In contrast,
the above exact computation results correspond to what
we term an initial-fill simulation, in which all of the lines

in a C-RAM are stored in order (with multiple runs
providing an average). Finally, simulations were used for
preliminary studies of various alternatives in fragment
recombining methods in the steady-state case, and of
sliding-cohort-type designs as previously described.

Results for partitioned cohorts, where each cohort
consists of one, two, or four pages, are shown in Table 3.
These results are for two-way fragment combining, using
first-fit (FF2) or best-fit (BF2) methods. Both initial-fill
and steady-state results are shown.

Note that compression is slightly better in the initial-fill
cases than in the corresponding steady-state cases. At first
this might seem counterintuitive, since in the steady-state
case the fragment of each changed line can potentially
recombine with the fragment of any other line in the
cohort, whereas in the initial-fill case each fragment can
combine only with the preceding fragments in the cohort.
However, a more detailed analysis reveals that conditions
arise in the steady-state case in which fragments are
not combined that would have been combined under
initial fill.

Last, we comment on the general characteristics of the
sliding-cohort simulation results. The results were mixed,
in that slightly better compression was obtained for initial-
fill cases, but slightly worse compression was obtained for
steady-state cases.

4. Analysis using memory dumps
In this section we present results for three examples of
real systems: main-memory dumps were obtained for 1)
a 64MB AIX* system, running a memory-intensive logic
simulator; 2) a 32MB Windows NT** system in which a
dump was obtained immediately after the system boot
process completed; and 3) a 32MB Windows NT system
in which a number of different applications were started
so as to allocate all of main memory. Below, these are
referred to respectively as the AIX(active), NT(boot), and
NT(active) memory dumps. A program emulating a four-
way parallel shared-dictionary compression method [7]
was used to compress each memory dump, one line

Table 3 Average compressed 4KB page sizes (simulations).

Cohort
size

FF2 BF2

Initial
fill

Steady
state

Initial
fill

Steady
state

4 2286 2304 2284 2300
(55.8%) (56.3%) (55.8%) (56.2%)

8 2247 2272 2243 2262
(54.9%) (55.5%) (54.8%) (55.2%)

16 2216 2249 2211 2231
(54.1%) (54.9%) (54.0%) (54.5%)

P. A. FRANASZEK AND J. T. ROBINSON IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

264

(1024 bytes) at a time, resulting in a sequence of
compressed- line sizes. Each sequence of compressed-
line sizes was then used as input to various “initial-fill”-
type simulations, as described in the previous section.

Results for the AIX and NT dumps are shown in
Tables 4, 5, and 6 for block sizes of 64, 128, and 256
bytes, respectively; in all cases the granule size is 32 bytes.
A block size of 64 bytes is a special case: With 32-byte
granules, each fragment is either full or half full. Given a
cohort, the same number of blocks are produced by any of
the fragment-combining methods in this case (including
catenation): If there are an even number of half-full
fragments in a cohort, they all combine pairwise;
otherwise, with an odd number, all but one fragment
combine pairwise, leaving exactly one half-full fragment.
Therefore, in Table 4 we give (for each memory dump and
cohort size) one compression result. For the larger block
sizes we give compression results for FF2 and FF3; best-fit
results were also obtained but are not shown because, to
the accuracy used in the tables (0.1%), the compression
results for best-fit are essentially the same as for
first-fit.

As discussed in the previous section, the compression
obtained using catenation is the best possible, subject
to the constraints that each line is stored as an integral
number of granules and that each cohort is stored as an
integral number of blocks. In fact, the compression results
shown in Table 4 (for a block size of 64 bytes) are quite
close to the “raw” line size compressions; that is, they are
close to the average of the compressed-line sizes used as
input to the initial-fill-type simulation divided by 1024.
For comparison, these are 34.1% for the AIX memory
dump, 48.8% for the NT(boot) dump, and 36.3% for the
NT(active) dump. However, even though the compression
results shown here are best for the 64-byte block size, we
see in the next section that this is not the best choice of
block size when the required directory space is taken
into account.

In contrast to the results based on a uniform
distribution of compressed-line sizes, note that there is a
significant improvement from using three-way combining
for a block size of 256 bytes (the improvement is less for
the smaller block sizes). An analysis of the distribution of
line sizes for the various dumps does in fact show a strong
degree of nonuniformity, with sharp peaks for a number
of small compressed-line sizes. For example, in the case
of the AIX dump, out of 65 536 lines, the most common
compressed-line size is 13 bytes (corresponding to a line
consisting of the same repeated byte, e.g., a line consisting
of all nulls); such lines occur 5828 times; i.e., they
comprise approximately 9% of all lines. Owing to the
presence of these and other small compressed-line sizes,
one would expect an advantage in being able to combine
more than two fragments. However, as noted previously,

in a fixed-size directory entry design, it is possible to store
sufficiently small compressed lines entirely in the directory
entry for the line. With 256-byte blocks, directory entries
could consist of four pointers plus flag bits, etc., and
require 16 bytes; in such a case, lines compressing to 15
bytes or less could be stored entirely within the directory
entry. Thus, in practice, three-way combining might not be
as effective as indicated above, since the small compressed
lines that give the improvement would not be available
for combining when stored within directory entries. In
order to investigate this, results were obtained for the
256-byte block case with the following modification: The
compressed-line size for all lines compressing to 15 bytes
or less was reset to 0 (emulating storing the line entirely
within the directory entry). The results are shown in
Table 7.

5. Optimal block sizes
In this section we consider the problem of choosing an
optimal block size. The tradeoff involved in choosing a
block size is that the larger the block size, the more
wasted space there is due to fragmentation; the smaller
the block size, the more space is required for the
directory.

In order to obtain an analytic result, we make some
simplifying assumptions. One of these is that the C-RAM
has a fixed average compression (that is, we assume that
the average compression is a constant). In the case of a
static-directory structure, our analysis applies to the case
in which the average compression is set to the maximum
level of compression supported by the directory structure;
the resulting block size will be (subject to the simplifying
assumptions) that which minimizes the total required
space for a static-directory design with the given maximum
compression parameter. In the case of a dynamic-directory
structure, the average compression should be set to a
value which is expected to be close to that which will
occur in practice; the resulting block size will be
approximately optimal (in terms of total required
space) when the C-RAM is operating at this degree of
compression. The following analysis actually applies to any
storage structure in which a number of fixed-size blocks
are used to store objects of variable size; therefore, we use
the term “object” to refer to a variable-size entity that is

Table 4 Compression (%) of memory dumps, block size 5 64.

Cohort
size

AIX(active)
CAT, FF,

BF

NT(boot)
CAT, FF,

BF

NT(active)
CAT, FF,

BF

4 36.0 50.7 38.2
8 35.8 50.5 38.1

16 35.7 50.4 38.0

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 P. A. FRANASZEK AND J. T. ROBINSON

265

being stored; in the context of C-RAM design, each object
is a compressed line.

Given a memory of total size M bytes, this memory
contains a directory which, for each object (i.e.,
compressed line in the C-RAM context), gives the location
of the blocks used to store the object. Here we use the
term “directory” in a general fashion: The directory
consists of all data in the memory other than blocks. For
example, a simplistic “directory structure” is the following:
1) external tables provide a pointer to the first block used
to store a given object; 2) each block is extended with a
pointer field, which is used to point to the next block used
to store the object, or is null if the block is the last such
block used. In this example, the collection of all pointers
is considered to be the directory.

Let q be the number of bytes used by the directory (in
the above general sense) per block stored in the memory.
For the previous simple design example, determining q is
straightforward: q is just the length (in bytes) of a block
pointer. In other cases, estimating q can require additional
information. For example, in the case of a directory
structure as previously illustrated in Figure 1, each
directory entry could have four pointers to blocks, plus
flags and fragment-combining information. Suppose this

directory entry requires q9 bytes. In order to estimate q,
we also need to know the average compression. If the
average compression is 50%, say, then even though the
average number of blocks pointed to by directory entries
could be greater than 2 (due to fragment combining), the
total number of blocks is half the total number of pointers
in the directory. In this case, q would be q9/ 2. If, for
example, each directory entry were 16 bytes long, q would
be 8 bytes; if, on the other hand, compression were 25%,
q would be 16 bytes, and so on. Although formally q could
be considered to be a function of block size and possibly
other parameters, the above examples illustrate that in
practice q can be estimated easily given a particular
directory structure, together with (in some cases) the
assumed constant average compression. Therefore, we
assume that q is a constant; the implications of this
simplifying assumption are discussed below.

Next, let p be the average size (in bytes) of an object,
and let b be the block size. Our objective is to find a value
of b that maximizes the total number of objects that can
be stored in a memory of size M (equivalently, as shown
below, given the total number of objects, we will find a
value of b that minimizes the memory size M required to
store the objects). In order to do this, we need to consider

Table 5 Compression (%) of memory dumps, block size 5 128.

Cohort
size

AIX(active) NT(boot) NT(active)

FF2 FF3 FF2 FF3 FF2 FF3

4 38.1 37.2 53.4 52.0 41.2 39.5
8 37.8 36.7 53.0 51.3 40.8 38.8

16 37.5 36.4 52.7 51.0 40.5 38.5

Table 6 Compression (%) of memory dumps, block size 5 256.

Cohort
size

AIX(active) NT(boot) NT(active)

FF2 FF3 FF2 FF3 FF2 FF3

4 43.3 40.4 59.0 55.0 47.4 42.6
8 42.7 38.9 58.3 53.3 46.7 40.8

16 42.1 38.3 57.7 52.5 46.1 40.0

Table 7 Compression (%) of memory dumps, block size 5 256 (lines compressing to 15 bytes or less in directory).

Cohort
size

AIX(active) NT(boot) NT(active)

FF2 FF3 FF2 FF3 FF2 FF3

4 41.1 39.5 55.2 53.5 43.3 41.1
8 40.5 38.3 54.5 52.3 42.6 39.8

16 39.9 37.6 54.0 51.7 42.0 39.1

P. A. FRANASZEK AND J. T. ROBINSON IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

266

the effect of fragment combining. Suppose there were no
fragment combining. Then, assuming a continuous uniform
distribution of fragments, the expected number of blocks
to store an object would not be simply p/b, but rather
p/b 1 1/ 2, since the last block used to store an object
(under these assumptions) is on the average half full. If
pairs of fragments were catenated, then again, assuming a
uniform continuous distribution of fragment sizes, it can
be shown that the expected size of a fragment would
be 1/2 of a block. However, now this fragment would be
shared between two objects, so in this case the expected
number of blocks to store a compressed object would be
p/b 1 1/4. We parameterize the effect of fragment
combining as follows: Given a particular fragment-
combining scheme, if the average number of blocks
to store an object under this scheme is found to be
p/b 1 1/n, we call n the fragment-combining effectiveness.
For fragment-combining methods described in previous
sections, such as two-way combining using first-fit
or best-fit with a cohort size of 4 and 32-byte granules,
n can be computed and has been found to be
approximately 4 (e.g., n is found to be 4.3 for
FF2 using the values from Table 1 of Section 3).

Given the total memory size M, as discussed earlier, the
tradeoff in finding an optimal value for the block size b is
as follows: As b increases, there is more wasted space in
fragments, since on a per-object basis each fragment is on
the average a fraction 1/n of a full block; as b decreases,
there is a larger total number of blocks, and therefore
more overhead in directory space, since each block
requires q bytes of directory space. An estimate of the
optimal value of b can be found as follows, using a
continuous approximation. First, the total number of
blocks in the memory is

M

b 1 q
.

Next, the total number of objects T that can be stored in
the memory as a function of b is given by the following:

T~b! 5
M/~b 1 q!

p/b 1 1/n

5
Mnb

~b 1 q!~np 1 b!
.

From this expression, it is easily found (see [4]) that,
under the above assumptions, the optimal value of b is
given by the following:

bopt 5 Înpq.

As an example, suppose we use a directory structure
for a C-RAM with directory entries consisting of K block
pointers (which includes flags and fragment-combining

information), and suppose each such entry requires 4K
bytes (where K depends on the block size; that is, smaller
blocks require more pointers for a given fixed line size in
the case that the line cannot be compressed). As in the
discussion above, under 50% compression this gives a
value for q of approximately 8 bytes (note that this is
independent of K). Setting p to 512 bytes (for 50%
compression of 1024-byte lines), and setting n to 4
(which is typical for two-way combining using first-fit
or best-fit with granules of size 32 bytes), we find

bopt < Î4 3 512 3 8 5 128.

Note that the equation above can be rewritten as
M/T 5 (b 1 q)(np 1 b)/nb. M/T represents the total bytes
used (including directory space) per object, and bopt minimizes
this quantity. This means that if instead of starting with
a fixed memory size M, we start with a fixed number of
objects T (corresponding to a given number of lines,
i.e., a logical memory size in the C-RAM context), bopt

minimizes the total memory required to store the given
number of objects.

For C-RAM directory structures of the types previously
discussed, in which highly compressible lines can be stored
entirely within directory entries, in practice there is a
complicating factor: As the block size decreases, the size
of directory entries increases, and therefore the maximum
compressed-line size that can be stored in a directory
entry also increases. Since such lines require no blocks to
be allocated, one might expect the improvement as the
block size is decreased to the optimal size as determined
from the above to be greater than that predicted by
analysis; similarly, one might expect the improvement as
the block size is increased to the optimal size as given
above to be less than that predicted analytically.

In order to investigate this issue, compression using
the memory dumps described in the previous section
was found for block sizes of 64, 128, and 256 bytes, in
which, however, lines compressing to 63, 31, or 15 bytes,
respectively, were considered to be stored entirely in
directory entries (that is, the compressed size of such
lines was set to 0). For the NT(active) case, for example,
with a cohort size of 4, and using FF2 or BF2, and with
other parameters such as granule size set as previously
described, compressions of 37.3%, 38.6%, and 43.3% were
obtained for the 64-, 128-, and 256-byte block-size cases,
respectively. For the AIX(active) case, the corresponding
compressions obtained were 35.1%, 36.6%, and 41.1%; for
the NT(boot) case, the corresponding compressions were
50.0%, 51.1%, and 55.2%. Suppose that we are using a
dynamic-directory structure and wish to provide a given
logical memory size: How much total memory (including
the directory) would be required for each of these cases?

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 P. A. FRANASZEK AND J. T. ROBINSON

267

Assuming that directory entries are 64, 32, and 16 bytes
per line for block sizes of 64, 128, and 256 bytes,
respectively, the total required memory for the various
compressions given above can be computed as follows.
Each megabyte of logical memory consists of 1024 1KB
lines, which requires 64 KB, 32 KB, and 16 KB of
directory space for block sizes of 64, 128, and 256 bytes,
respectively. The space used by blocks to store compressed
lines, for each megabyte of logical memory, is 1 MB
multiplied by the compression number given above. The
results are as shown in Table 8.

Here, a block size of 128 bytes (as estimated analytically
above) is optimal among the cases in which block sizes are
constrained to be powers of 2. As one moves from a block
size of 256 bytes to 128 bytes, approximately 7% less
memory is required [the improvement is slightly less for
the NT(boot) case]; moving from 64-byte blocks to 128-
byte blocks, approximately 4% less memory is required.

Previously we defined compression as the sum of the
sizes of the blocks used to store a set of lines divided by
the sum of the uncompressed line sizes. If, however, we
include the space used by the directory, which is necessary
to address the lines, we obtain a larger number, which we
term the net compression. To distinguish this from our
earlier definition, we call the compression obtained not
including the directory space the data compression. It is
of interest to see how much compression is lost due to the
inclusion of the space used by the directory. A comparison
of the data and net compressions for the cases shown
previously in Table 8 is shown in Table 9, in which the net
compressions are found from the values given in Table 8
by dividing by 1024 KB. With a block size of 256 bytes,
the loss in compression due to including directory space is
quite low; at a block size of 128 bytes there is a greater

corresponding loss, but due to improved data compression,
the net compression is better than the 256-byte block size
case; finally, with 64-byte blocks, the loss is substantial,
resulting in worse net compression as compared to the
128-byte block case even with somewhat better data
compression.

Similar results were obtained for static-directory
designs. Analysis of various static-directory-design cases
(not shown here) indicates improvements from using 128-
byte blocks versus 64- or 256-byte blocks in total required
memory ranging from 4% to 13%, where the maximum
compression parameter is set to net compression values
ranging from 25% (4:1) to 50% (2:1).

6. Conclusions
Effective use of compressed random-access memories
at the lowest level of a system main-memory hierarchy
involves finding relatively simple designs, suitable for
hardware implementation, for directory structures and
memory management, which nevertheless make efficient
use of available memory. With respect to memory
management, since cache lines compress to varying sizes,
an immediate problem is that of allocating storage for
variable-size objects. The simple approach of organizing
the memory as a collection of fixed-size blocks, and
allocating an integral number of blocks to store each
compressed line, results in significant fragmentation
for practical block sizes. However, by allowing the last
partially used blocks, i.e., fragments, allocated to small
predetermined sets of lines, called cohorts, to be
combined, fragmentation can be significantly reduced.
Neither large cohort sizes nor high degrees of fragment
combining are necessary; the results presented here
indicate that very little benefit is obtained beyond using
two-way combining with cohorts of size 4, for example.

With respect to directory structure, there are two
approaches: In a static design, the directory is preallocated
with a fixed size sufficient to support a given maximum
degree of compression; in a dynamic design, groups of
directory entries (for the lines contained in a page, for
example) are allocated and deallocated as compression,
and therefore the total logical main-memory size, varies.
The advantage of the static design is simplicity; the
disadvantage is that unless compression is close to the

Table 9 Comparison of data compression and net compression (%).

Block
size

AIX(active) NT(boot) NT(active)

Data Net Data Net Data Net

256 41.1 42.7 55.2 56.8 43.3 44.9
128 36.6 39.7 51.1 54.2 38.6 41.7
64 35.1 41.3 50.0 56.3 37.3 43.6

Table 8 Required total memory for each megabyte of
logical memory.

Block
size

AIX(active)
(KB)

NT(boot)
(KB)

NT(active)
(KB)

256 436.9 581.2 459.4
128 406.8 555.3 427.3
64 423.4 576.0 446.0

P. A. FRANASZEK AND J. T. ROBINSON IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

268

predetermined maximum value, there is wasted space (if
compression is better than the predetermined maximum,
there are unused blocks; if compression is worse than this
value, there are unused directory entries). An interesting
property of the dynamic-directory design is that, assuming
4KB pages and 1KB lines, a block of size 128 bytes can be
used as either a group of four directory entries for a page
or as a block to hold compressed-line data, and that, as
described below, this block size is optimal under certain
general assumptions. Thus, in this case memory could be
managed in a uniform way as a collection of 128-byte
blocks, used for either directory entries or data as
required (as opposed to approaches in which memory
is partitioned into directory and data spaces).

With respect to choice of block size, the tradeoff is
that smaller block sizes require a larger directory space;
however, larger blocks result in increased fragmentation.
Thus, finding an optimal block size involves balancing the
required directory space and amount of fragmentation.
An analytic model was used to predict the optimal block
size, given the average compressed-line size, the bytes
of directory space used per block, and a measure of
fragment-combining effectiveness. For typical parameters
and fragment-combining effectiveness results, we found
that the optimal block size is of the order of 128 bytes.
However, the analytic model uses several simplifying
assumptions, and in particular does not take into account
the fact that larger directory entries can be used to store
more lines in a format in which no blocks are allocated
for a line when the compressed line can fit entirely within
the directory entry. Interestingly, a more detailed analysis
(that included this effect) using memory dumps to compare
various block sizes yielded the same result as the analytic
model; i.e., a block size of 128 bytes was found to be
optimal.

Finally, although the dynamic-directory approach is
somewhat more complex than the static design, it appears
that it is also suitable for hardware implementation.
However, if, in a given system, the compression does not
vary greatly, a static design (configured appropriately)
could be acceptable.

Acknowledgment
Charles Schulz and Dan Poff gave significant help in
providing parallel compression emulation code and access
to memory dumps.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Microsoft
Corporation.

References
1. M. Pietrek and L. Seltzer, “Windows 3.1 Memory

Enhancement Utilities,” PC Magazine 15, No. 4,
205–213 (February 20, 1996).

2. M. Kjelso, M. Gooch, and S. Jones, “Design and
Performance of a Main Memory Hardware Data
Compressor,” Proceedings of the 22nd EUROMICRO
Conference, IEEE, 1996, pp. 423– 430.

3. F. Douglis, “The Compression Cache: Using On Line
Compression to Extend Physical Memory,” Proceedings of
the Winter 1993 USENIX Conference, USENIX Association,
San Diego, 1993, pp. 519 –529.

4. R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O.
Schulz, T. B. Smith, M. E. Wazlowski, and P. M. Bland,
“IBM Memory Expansion Technology (MXT),” IBM J. Res.
& Dev. 45, No. 2, 271–285 (2001, this issue).

5. P. Franaszek and J. Robinson, “Design and Analysis of
Internal Organizations for Compressed Random Access
Memories,” Research Report RC-21146, IBM Thomas
J. Watson Research Center, Yorktown Heights, NY,
October 20, 1998.

6. P. A. Franaszek, “System and Method for Reducing
Memory Fragmentation by Assigning Remainders to Share
Memory Blocks on a Best Fit Basis,” U.S. Patent 5,761,536,
June 2, 1998.

7. P. A. Franaszek, “A System and Method of Compression
and Decompression Using Store Addressing,” U.S. Patent
5,864,859, January 26, 1999.

8. P. Franaszek, J. Robinson, and J. Thomas, “Parallel
Compression with Cooperative Dictionary Construction,”
Proceedings of the DCC ’96 Data Compression Conference,
IEEE, 1996, pp. 200 –209.

9. P. Franaszek, P. Heidelberger, and M. Wazlowski, “On
Management of Free Space in Compressed Memory
Systems,” Proceedings of the International Conference on
Measurement and Modeling of Computer Systems, ACM,
1999, pp. 113–121.

Received August 29, 2000; accepted for publication
March 26, 2001

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 P. A. FRANASZEK AND J. T. ROBINSON

269

Peter A. Franaszek IBM Research Division, Thomas
J. Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (paf@us.ibm.com). Dr. Franaszek received
the Ph.D. degree in electrical engineering from Princeton
University in 1965. From 1965 to 1968, he was employed by
Bell Laboratories. He joined the IBM Research Division in
1968. During the academic year 1973–1974, he was on
sabbatical leave at Stanford University as Consulting
Associate Professor of Computer Science and Electrical
Engineering. He is currently Manager of Systems Theory and
Analysis. His interests are in the general area of information
representation and management, and computer system
organization. Dr. Franaszek has received two IBM Corporate
Awards for his work on codes for magnetic recording, an IBM
Corporate Patent Portfolio Award for his contribution to the
ESCON architecture, and IBM Outstanding Innovation Awards
for fragmentation-reduction algorithms, network theory,
concurrency-control algorithms, run-length-limited codes,
and the code used in ESCON, Fiber Channel, and Gigabit
Ethernet. He is a member of the IBM Academy of
Technology and a Master Inventor. He is a Fellow of the
IEEE, and received the 1989 Emmanuel R. Piore Award from
the IEEE for his contributions to the theory and practice of
constrained channel coding in digital recording. Dr. Franaszek
holds thirty-six patents and has published more than forty
technical papers.

John T. Robinson IBM Research Division, Thomas
J. Watson Research Center, P.O. Box 218, Yorktown
Heights, New York 10598 (robnson@us.ibm.com;
http://www.research.ibm.com/people/r/robnson/). Dr. Robinson
received the B.S. degree in mathematics from Stanford
University in 1974, and the Ph.D. degree in computer science
from Carnegie Mellon University in 1982. Since 1981, he has
been with the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York. His research interests include
database systems, operating systems, parallel and distributed
processing, design and analysis of algorithms, and hardware
design and verification. He is a member of the ACM and the
IEEE Computer Society.

P. A. FRANASZEK AND J. T. ROBINSON IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

270

