
by B. Abali
H. Franke
D. E. Poff
R. A. Saccone, Jr.
C. O. Schulz
L. M. Herger
T. B. Smith

Memory
Expansion
Technology (MXT):
Software
support and
performance

A novel memory subsystem called Memory
Expansion Technology (MXT) has been built for
fast hardware compression of main-memory
content. This allows a memory expansion to
present a “real” memory larger than the
physically available memory. This paper
provides an overview of the memory-
compression architecture, its OS support
under Linux and Windows®, and an analysis
of the performance impact of memory
compression. Results show that the hardware
compression of main memory has a negligible
penalty compared to an uncompressed main
memory, and for memory-starved applications
it increases performance significantly. We
also show that the memory content of an
application can usually be compressed by a
factor of 2.

1. Introduction
Data compression techniques are extensively used in
computer systems to save storage space or bandwidth.
Both hardware- and software-based compression
techniques are used for storing data on magnetic media or

for transmission over network links. While compression
techniques are prevalent in various forms, hardware
compression of main-memory content has not been used
to date because of its complexity. The primary motivator
for a compressed main-memory system is savings in
memory cost and space savings for tightly packed
systems, such as for 1U (one height unit, or 1.75 in.)
thin, rack-mounted systems. Figure 1 illustrates the
general cost and space-sharing benefits of memory
compression. Compression increases the amount of
memory or, in cost-sensitive applications, it provides the
expected amount of memory at a smaller cost. Recent
advances in parallel compression– decompression
algorithms coupled with improvements in silicon density
and speed now make main-memory compression practical
[1– 4]. A high-end, Pentium**-based server-class system
with hardware-compressed main memory, called
Memory Expansion Technology (MXT), has been
designed and built [3]. In this paper, we present an
overview of the hardware and software technology
required to enable MXT, and provide performance
results and main-memory compressibility of a few
benchmarks. Results show that two-to-one (2:1)
compression is practical for most applications and that the
performance impact of compression is insignificant; for

rCopyright 2001 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/01/$5.00 © 2001 IBM

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 B. ABALI ET AL.

287

memory-starved applications, main-memory compression
improves performance significantly. Two-to-one
compression effectively doubles the amount of memory;
or, in cost-sensitive applications, it provides the expected
amount of memory for half the expected cost or even less.
The additional hardware cost of MXT over a standard
platform is estimated to be less than $100 U.S. At the
writing of this paper, memory prices were about $1
per megabyte for 128MB memory modules. Therefore,
the break-even memory size for MXT was around
128 MB. Furthermore, the price per megabyte increases
progressively with 512MB, 1GB, 2GB, and 4GB system
memory configurations. Larger memory configurations
require more expensive, higher-density memory modules
because of the four-memory-slot limit of a typical system.
Therefore, an additional cost benefit of MXT is its ability
to use less expensive, lower-density modules.

Observations show that the main-memory content of
most systems, operating system and applications included,
is compressible. There are relatively few applications for
which data that are already compressed or encrypted
cannot be further compressed. In the MXT system, a
compressed memory/L3 cache controller chip is central
to the operation of the compressed main memory [3].
The MXT architecture adds a level to the conventional
memory hierarchy. Real addresses are the conventional
memory addresses seen on the external bus of the
processor. Physical addresses are the addresses used
behind the controller chip for addressing the compressed
memory, also referred to as physical memory in this paper.
The controller performs the real-to-physical address
translation and compression– decompression of L3 cache
lines. The processors are off-the-shelf Intel** processors.
They run with no changes in the processor or bus
architecture. Standard operating systems, such as Windows
NT**, Windows 2000**, and Linux, run on the new

architecture with no changes for the most part. However,
a corner case exists, in which physical memory may be
exhausted because of incompressible data. Standard
operating systems are unaware of this problem. Hence,
software support is needed to prevent physical memory
exhaustion. The amount of physical memory required
changes with the compressibility of the memory content.
For example, a program starting with zero-filled buffers
will require more physical memory as the buffers
are loaded from disk. Hence, the physical memory
requirements change as the program runs, requiring
constant monitoring and tuning as well as a recovery
process if memory usage approaches the limit of the
physical size. This corner case and compressed-memory
management are handled by small modifications in the
Linux kernel and by a set of user-level services and a
device driver in the Windows NT and Windows 2000
operating systems.

Related work
Reference [2] considers an approach to compression that
yields parallel speedup while maintaining the compression
efficiency of sequential approaches. Related work [5]
focuses on the internal design of compressed random-
access memories. The issues of effective memory
management in a compressed-memory system are
considered in [6]. A method for estimating the number of
page frames as a function of physical memory utilization
is described. The authors further model the residency of
outstanding I/O instructions as those instructions transfer
data into the memory when streamed through a cache,
thus potentially forcing cache writebacks that could
increase physical memory utilization. Using a time-delay
model, they evaluate the system behavior using simulation.
Reference [7] describes an approach to compression that
removes the tight constraints of latency and bandwidth.
This is accomplished by devising an architecture with two
pseudolevels— compressed and uncompressed memory.
The CPU operates only from the uncompressed region,
in which the most frequently used pages are stored.
Reference [8] introduces the concept of the compression
cache, an intermediate level in the memory hierarchy that
serves as a paging store. The author introduces this
concept to take advantage of the improving speed of
processors versus disk, and notes that the growing
disparity between these system elements makes
compression close to the processor an appealing feature.
Reference [9] and the TinyRISC effort use compression to
reduce embedded system code size. References [10] and
[11] use compression techniques to increase branch-
prediction accuracy in microprocessors. Reference [12]
describes algorithms and data structures for compressed-
memory machines.

The primary contributions of this paper are as follows:

Figure 1

Motivation and benefits of main-memory compression; example
performance vs. memory curves: with MXT (red curve); without
MXT (blue curve).

Box physical
memory limit

Without
compression

With compressionHigher performance

Improved
cost/performance

Lower cost

More memory

B
et

te
r

pe
rf

or
m

an
ce

B. ABALI ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

288

1. We describe the OS support software for managing the
physical (compressed) memory. Our approach allows
the entire memory to be compressed, in contrast to that
of [8], and it does not partition the main memory into
compressed and uncompressed segments as in [7].
Combined software/hardware design allows applications
to run and take advantage of compression
transparently.

2. Using benchmarks, we show the cost/performance
benefits of doubling the memory size due to
compression.

3. We further show that for a number of applications,
main-memory content can be compressed effectively.

In the following section we give an overview of the
MXT hardware. In Section 3 we describe the memory-
compression support added to the Linux and Windows
operating systems. In Section 4, we present experimental
results of running a database benchmark on the MXT
system and examine the compressibility of the memory
contents of various applications. Conclusions are
presented in Section 5.

2. Overview of MXT hardware
The organization of the MXT system is shown in Figure 2.
The physical memory (SDRAM) contains compressed data
and can be up to 16 GB in size. The third-level (L3) cache
is a shared, 32MB, four-way set-associative writeback
cache with 1KB line size. The L3 cache is composed
of double-data-rate (DDR) SDRAM. The L3 cache
contains uncompressed cached lines and hides the
latency of accessing the compressed memory. The L3
cache/compressed-memory controller (the Champion
Northbridge CNB 3.0 HE component of the Pinnacle
server chipset developed in cooperation with Serverworks)
is central to the operation of the MXT system. The L3
cache appears as the main memory to the processors and
I/O devices, and its operation is transparent to them. The
controller compresses 1KB cache lines before writing
them into the physical memory.

The compression algorithm is a parallelized
generalization [2] of the Lempel–Ziv algorithm known as
LZ1. The compression scheme stores compressed cache
lines to the physical memory in a variable-length format.
The unit of storage in physical memory is a 256-byte
sector. Depending on its compressibility, a 1KB cache
line may occupy 0 to 4 sectors in the physical memory.
Because of this variable-length format, the controller must
translate real addresses to physical addresses. A 1KB
cache-line (real) address is mapped to sector (physical)
addresses in the physical memory. The real address is
the conventional address seen on the external bus of the
processor chip. The physical address is used for addressing
the sectors in the compressed physical memory. The

memory controller performs real-to-physical address
translation by a lookup in the compression translation
table (CTT), which is kept (uncompressed) at a reserved
location in the physical memory. The CTT size is 1/64 of
the real memory size.

Each 1KB cache-line address maps to one entry in the
CTT, and each CTT entry is 16 bytes long (therefore the
64 to 1 ratio between the real memory size and the CTT
size). A CTT entry contains control flags and four physical
addresses, each pointing to a 256-byte sector in the
physical memory. Figure 3 shows the different physical-
memory occupancies that result from compressing 1KB
cache lines with different compression characteristics. For
example, a 1KB cache line which does not compress
occupies four sectors, i.e., 1 KB of physical memory.
A cache line that compresses by 2:1 occupies only two
sectors in the physical memory (512 bytes), and the CTT
entry contains two addresses pointing to those sectors,
while the remaining two pointers are null. For a cache line
that compresses to less than 120 bits, for example a cache
line full of zeros, a special CTT format called trivial line
format exists. In this format, the compressed data are
stored entirely in the CTT entry, replacing the four
address pointers. Therefore, a trivial line of 1 KB
occupies only 16 bytes in the physical memory, resulting
in a compression ratio of 64:1. Another memory-saving
optimization implemented in the controller is sharing of
sectors by cohort cache lines. If two 1KB cache lines are in
the same 4KB page, they are called cohorts. Two cohorts

Figure 2

Overview of a system with memory expansion technology (MXT).

Compression,
decompression,

and memory
management

Large shared
cache L3
(32 MB)

Processor front side bus

Processor
module

Processor
module

Processor
module

Processor
module

CNB30 memory
controller

Free sector storage
256-byte sectors,
0–4 allocated to each
1KB compression
block as needed.

Main memoryCompression
translation

table
(CTT)

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 B. ABALI ET AL.

289

may share a sector, provided that space exists in the
sector. For example, two cohorts each compressing
to 100 bytes may split and share a sector, since their
total size is less than the sector size of 256 bytes. The
compression operations described so far are done
entirely in hardware with no software intervention.

Note that the selection of the 1KB line size was
influenced by many factors. Directory size, which grows
in inverse proportion to the cache-line size for a given
cache size, and compression-block size, which affects the
compression efficiency, were the two most significant
factors in selecting the 1KB line size [3]. Shorter lines
may not compress well, and longer lines may affect
performance because of longer compress/decompress
times. In this implementation, multiple compressors are
used for performance reasons, but the dictionary is shared
to achieve a better compression ratio. Another technique
that is employed to decrease memory-access latency is to
provide the critical 32 bytes of data to the processor bus
as soon as they are decompressed, rather than waiting
until the entire 1KB line is completed. This technique, on
average, reduces the decompression latency by one half.

In addition to the above operation, the compressed-
memory controller provides fast page operations, such
as page moving and page zeroing, which are performed
significantly faster than if issued through regular memory
operations. Fast page operations work on 4KB pages, the
same as in the x86 architecture. The increase in speed is
achieved merely by updating pointers in the CTT entries,
rather than by moving bulk data with the processor.

The MXT architecture solves various problems
that prevent successful deployment of main-memory
compression: First, recent increases in the density of ASIC

technology utilizing 0.18-mm packaging and smaller gate
technologies, coupled with tools for custom design, allow
the entire L3 cache/compressed-memory controller to be
implemented on a single chip (CNB30). This chip includes
the L3 directory but excludes the L3 data, which are in
32MB DDR SDRAM. The decompression latency is
reduced significantly through the use of parallel
compression techniques and a deep memory hierarchy.
Memory hierarchies employing multiple cache levels have
been used for many years to reduce the effect of main-
memory access times, particularly since the disparity
between processor-bus speeds and memory-bus speeds has
grown in the past decade. In the MXT architecture, the
additional L3 cache captures many accesses that would go
to main memory for miss retrieval. The sizes of L2 and
L3 are 256 KB and 32 MB, respectively, leading to a low
global miss rate. In addition, the L3 cache is shared, four-
way set-associative, and writeback. These characteristics,
along with the large line size of 1 KB in the L3, allow
for a low miss rate to the main memory.

In the MXT architecture, I/O data move through the
shared L3 cache, in contrast to traditional L1/L2 cache
organizations. It would be appealing to have direct I/O
access to the compressed physical memory in terms of
saving disk space and I/O bandwidth due to the typically
higher-than-1.0 compression ratio. However, this would
have been somewhat difficult and impractical, since it
would require additional compression circuitry in the I/O
path and since data are possibly scattered in several
noncontiguously located 256-byte sectors.

Another aspect of this architecture is the real-to-
physical address translation performed by the MXT
memory controller. The translation is performed
transparently to the processors, I/O devices, and software,
and provides the advantage of being able to use stock
CPUs and I/O peripherals without any changes in the
software (except for the memory-management subsystem
of the OS). The translation is performed only for L3 cache
misses, which are in the low single digits because of the
large L3 size. For current processor/memory organizations,
combining real-to-physical address translation with virtual-
to-real address translation appears neither useful nor
practical unless processors and memory controllers
are integrated on a single chip in the future.

3. MXT memory-management software
Common operating systems do not distinguish between
real and compressed physical memory, nor do they deal
with out-of-physical-memory conditions. The MXT
memory-management software addresses this problem.
For Linux, minor changes to the kernel were made. For
Windows NT and Windows 2000, since kernel source code
is generally not available, a combination of device-driver
and user-level services was implemented. In this section,

Figure 3

Physical memory occupancy compression of L3 cache lines through
the CTT.

L3 cache

L3 cache line 1 KB

CTT entries (16 bytes) Physical memory

No sectors used

Incompressible

L3 cache line 1 KB 0 0
Sector (256 B)

Sector (256 B)

1024B to 512B
compression

L3 cache line 1 KB
Compressed

data

1024B to <120 bits
compression

B. ABALI ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

290

we describe a set of generic mechanisms for making any
operating system compression-aware. We then follow with
a description of compressed-memory management for
Linux and Windows operating systems, which are designed
and implemented by two separate teams of programmers.
The differences between two implementations mostly have
to do with the different constraints each OS imposes: For
example, the Windows source code was not available, and
compressed-memory management had to be done from
outside the kernel, increasing the complexity of the code.
However, both implementations use the same set of
generic mechanisms described in this section.

The MXT hardware allows an operating system to use
a larger amount of real memory than physically exists.
During boot time, memory-size detection routines report
to the OS twice the amount of physically available
memory. For example, the particular MXT system we used
has 512 MB of physical memory, but BIOS reports having
twice that amount, 1 GB of memory. The main problem in
such a system occurs when application(s) begin to fill the
memory with incompressible data when the operating
system commits more real memory than is physically
available. In these situations, the common OS is unaware
that the physical memory is being exhausted. Fortunately,
minor changes in the virtual-memory management (VMM)
of the OS kernel are sufficient to render the OS
compression-aware.

At this stage we need to introduce and distinguish
between the concepts of “static compression ratio” and
“dynamic compression ratio.” Static compression ratio is
fixed in the BIOS setup. It is the ratio of the memory size
BIOS reports to the operating system to the physical
memory size, i.e., the actual amount of memory in the
system. Static compression ratio is fixed at 2.0 in the
current BIOS because measurements show that a 2:1
compression ratio is typical for a large number of
applications. Dynamic compression ratio is a function of
time and depends on the application. For example, during
the initial phases of execution, an application will have
most of its allocated memory filled with zeros and may
therefore exhibit a compression ratio as high as 64:1. As
execution progresses, the compression ratio will change
depending on the memory content. It is possible to
provide a static compression ratio of up to 64:1, but this
implies that the OS must support 64 times the physical
memory in terms of page frames. Since page-frame data
structures are typically pinned, this would require a
significant commitment of memory resources for an
unlikely scenario.

Linux and Windows NT run without any changes in
expanded (real) memory, as long as the compressed
physical memory is not exhausted. The OS is shielded
from the peculiarities of addressing the physical memory.
However, to take full advantage of the memory-

compression capability, the MXT system must eliminate
the physical-memory exhaustion problem. The OS must be
ready to reduce physical-memory utilization when it is
near exhaustion by reducing real-memory usage or by
increasing the dynamic compression ratio. The basic
problem of running out of physical memory may be
illustrated in the following example: A 1GB real-memory
system may have only 600 MB allocated and therefore
may appear to have 424 MB of free memory. However,
because of the low compression ratio of the contents, the
physical memory usage may be near the 512MB physical-
memory limit. Therefore, if the remaining 424 MB of
“free memory” is allocated, or if compressibility of the
allocated memory decreases further, the system will run
out of physical memory, even though it appears to the
standard OS that free memory exists.

Compression-management software may deploy one
or more of the following generic mechanisms to prevent
physical memory exhaustion:

1. Detect physical memory utilization:
a. Either by polling or through interrupts, it

detects physical memory utilization and
exhaustion.

b. It then detects excessive I/O activity in order
to adjust various thresholds to ensure forward
progress [6].

2. Reclaim real memory and zero out freed pages to
reduce utilization:

a. Pageable pages:
i. Make the VMM believe that it is running

out of memory and cause shrinking of file
caches, and cause the paging daemon to
move “dirty” pages to the swap disk. Pages
freed are cleared with zeros, so that
physical utilization decreases; or

ii. Dispatch “memory-eater” tasks/processes
that allocate large chunks of memory by
stealing them from other processes. Then,
clear the pages, while holding on to them
as long as the physical utilization is high.

b. Nonpageable pages (e.g., drivers and kernel
extensions):

i. Reserve an amount in physical memory
equal to the nonpageable memory size.

ii. Force drivers to free memory (e.g., MXT-
aware drivers).

3. Steal CPU cycles to prevent further increase in
utilization:

a. Deschedule processes;
b. Decrease process priorities; or
c. Activate a set of busy threads (one per CPU)

to block processes from running.

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 B. ABALI ET AL.

291

The compression management must be aware of
physical-memory utilization. For this purpose, the
MXT architecture exposes a set of monitoring registers.
This register set is memory-mapped and accessible by the
processors. The sectors-used register (SUR) reports the
physical amount of memory utilized. The management
software can periodically (e.g., every 10 ms or more)
check the SUR to identify whether physical memory is
near exhaustion. Alternatively, it can set two different
threshold registers to raise an interrupt when the SUR
value exceeds them: a) the sectors-used threshold-low
(SUTRL) register raises an interrupt when the SUR
exceeds SUTRL, and b) the sectors-used threshold-high
(SUTRH) register raises a nonmaskable interrupt when
SUR exceeds SUTRH.

A typical software implementation may have additional
thresholds and zones of physical memory utilization (as
shown in the example in Figure 4): steady-state, warning,
emergency, and bug check zones. The last three zones are
defined as the operational or end zone of the compressed-
memory manager, in which it is actively working to reduce
physical-memory utilization.

When physical-memory utilization reaches critical levels,
further memory allocation must be prevented. To do so,
we must make the OS believe that it is running out of real
memory as well. This process is discussed in more detail
further on; essentially, however, in Linux we raise the
minimum number of free pages required by the kernel,
while in Windows NT and Windows 2000 we aggressively
allocate and hold the free pages in the system. If physical
utilization does not return below a desired threshold, we
continue to raise the free-memory threshold under Linux
and continue to allocate pages under Windows. This in
turn will force the OS to replenish the free-memory pool;
hence, it will activate its swap daemon. Paging out pages
by itself does not solve the problem, because neither OS
clears freed pages. These pages must be cleared explicitly

to reduce physical-memory utilization. When clearing
pages, we utilize the fast page-zero operation, which
has the effect of flushing a page out of the L3 cache
(if present in L3), freeing any physical memory in use
by the page, and writing the zero-bit pattern to the
page’s CTT entries.

Unfortunately, even this forced paging mechanism can
be insufficient to reduce physical-memory utilization,
because paging (to swap disks) occurs at the mechanical
speed of disks. However, physical-memory utilization can
increase at the speed of memory access. If physical-
memory utilization continues to increase despite
aggressive paging, processes must be slowed down—
by decreasing their priority, by descheduling them,
or by activating high-priority “busy threads” that steal
cycles— until the paging mechanism has produced a
sufficient decrease in physical-memory utilization.

In summary, the compression-management schemes
described here serve to keep physical memory utilization
below preset limits. Above those limits, the compressed
memory system behaves the same as a conventional system
with insufficient memory and therefore exhibits increased
paging activity. In the following section, we describe our
implementation for the Linux and the Windows NT and
Windows 2000 (Windows NT/2000) operating systems.

Compression support under Linux
A compression-aware Linux kernel uses three primary
mechanisms to control physical-memory utilization. First,
the low-memory watermark of the free-page pool, which
is a constant value in the conventional Linux kernel,
is changed to a dynamically adjusted variable in the
compression-aware kernel. When physical-memory
utilization exceeds the preset thresholds, the low-memory
watermark is raised, and the paging daemon is signaled to
reclaim pages from the file-system cache and processes.
This action will eventually increase the number of free
pool pages. Second, when physical-memory utilization is
above the preset thresholds, memory allocation is limited
in order to prevent further exhaustion. As a result, the
VMM is forced to replenish pages in the free-page pool.
Third, reclaimed pages are zeroed before adding them to
the free-page pool. An L3 cache line filled with zeros can
be compressed to 1/64 of its original size, as discussed in
Section 2. Therefore, zeroing freed pages helps reduce
physical-memory exhaustion. In the following we describe
these mechanisms in more detail.

In the Linux kernel, free pages are maintained within
the free area by a “buddy” algorithm in order to ensure
allocation of consecutive physical-memory ranges.
The interface to this algorithm is the command pair
get_ free_ pages (to allocate a power-of-two number of
pages) and free_ pages (to free a set of pages). On top of
this page-frame management, Linux provides a kmalloc

Figure 4

Physical memory utilization zones and operation mode of the MXT.

Steady-state
zone

Warning memory-
state zone

Emergency memory-
state zone

Bug check
zone

Operational or end zone

Steady-state
threshold (SUR)

Emergency-state
threshold (SUTHR)

Warning-state
threshold (SUTLR)

M
ax

physicalm
em

ory

B. ABALI ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

292

interface for allocation of smaller chunks. It also provides
an object SLAB allocator for its internal data structures
[13].

The standard Linux 2.2 kernel by default tries to
maintain a minimum of 256 free pages (1 MB) at all times
for important kernel routines that should always succeed
in page allocation, such as interrupt service routines.
This low-memory watermark is a constant value named
freepages.min and is set at boot time. During page
allocation, if the number of free pages in the system
(nr_ free_ pages) falls below freepages.min, the memory-
management routines are called in sequence to trim SLAB
caches, shrink memory-mapped files, get rid of shared-
memory pages, and finally swap out process pages to the
swap disk until the number of free pages increases above
the freepages.min threshold. A Linux paging daemon,
called kswapd, also exists that accomplishes the same
objective in a lazy manner. The kswapd process
“wakes up” once a second and tries to free up pages if
nr_free_ pages falls below another constant, freepages.high,
which has been set to three times freepages.min at boot
time.

In the compression-aware Linux kernel, the
freepages.min and freepages.high watermarks are not
constants, but are dynamically adjusted variables whose
values are changed by the compression-management
routines. In our prototype implementation, we check the
physical memory utilization by polling the SUR register
every ten milliseconds during the OS clock interrupts, and
we recalculate new watermark values if needed. Polling
adds a negligible overhead to the CPU utilization. When
physical memory utilization is below the threshold
th_acquire50.85, the watermarks are kept at their
original boot time values. When utilization is between
th_acquire50.85 and 1.00, watermarks are governed by the
equation shown in Figure 5. The solid line indicates how
much more physical memory usage is allowed. At every
clock tick, watermarks are recalculated using the equation
represented by the solid line. The Current5Target line
(slope51.0) and the objective function (solid line)
intersect at th_danger50.90, which means that physical-
memory utilization may not exceed th_danger50.90.
When utilization is between th_acquire50.85 and
th_danger50.90, the difference between target utilization
(PTU) and current utilization (PMU) represents the
amount of physical memory available for allocation. If
more memory is demanded, the Linux virtual-memory
manager must free up pages from elsewhere before
handing them to the caller. (Note that physical utilization
is also increased when processes change the memory
content.) When utilization is above th_danger50.90, PTU
is smaller than PMU. Therefore, compression-management
routines must reduce physical-memory utilization. This is
accomplished by setting the free-page pool watermarks

freepages.min and freepages.high to a number greater
than the number of free pages. Then the kswapd daemon
is signaled. Kswapd, by design, must begin freeing up
pages until the number of free pool pages increases above
the watermark freepages.high. Watermarks are calculated
using the following equations. Let UP be the number of
used pages in real memory and FP be the number of
free pages in real memory (nr_free_pages), where the
total number of real pages is T 5 UP 1 FP. Then,
UP 3 PTU/PMU 5 MP gives the target real-page
usage. Then freepages.high is set to T 2 MP. From
Figure 5 it can be seen that if PMU , 0.90, PTU . PMU,
which results in freepages.high ,FP. If PMU . 0.90,
then PTU , PMU, which results in freepages.high .FP.
Thus, in the latter case the number of free pages is less
than the required minimum, and kswapd must retrieve
used pages and add them to the free-page pool.

The thresholds th_acquire and th_danger are empirically
determined constants whose values are calculated at boot
time as a function of L3 and physical memory size.
Since L3 is a writeback cache, its contents and the
corresponding physical memory locations are not
coherent. In the worst case, the entire L3 may contain
incompressible data, and the corresponding physical
memory may be totally compressible; for example,
consider an L3 filled with random data vs. the
corresponding physical memory locations containing all
zeros. In this worst-case scenario, an L3 cache flush into
the physical memory will result in an increase in physical-

Figure 5

Memory manager objective function: Current (PM) vs. target (PT)
physical utilization.

PM

PT

90%85% 100%

90%

85%

100%

Target
utilization

Current
utilization

Objective
function

Target

Physical
memory to
reduce by

Slope � 1

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 B. ABALI ET AL.

293

memory utilization by the L3 amount. To eliminate this
hazard, we must keep in reserve free physical memory
equal to the L3 amount. This means that the equation
th_danger , 1 2 L3 size/usable physical-memory size must
be satisfied, where usable physical-memory size 5 installed
physical-memory size 2 CTT size. For a 512MB installed
physical memory and a 32MB L3 cache system, the CTT
size is 1024/64 5 16MB. Therefore, th_danger must be
less than 1 2 32/(512 2 16) 5 0.94. An additional hazard
may theoretically exist: When the threshold is exceeded,
execution of kswapd and various compression-management
routines may result in an additional increase in physical
utilization, since they modify system structures in the
memory, such as page tables. To cover this hazard, we
reserve an additional, empirically chosen 4% of physical
memory, therefore setting th_danger to 0.90 at boot time.
Determining the guaranteed-to-be-safe reserve amount is
a subject of ongoing studies.

Note that increasing the number of free pages in the
system alone does not achieve the reduction in physical-
memory utilization, because freed pages retain their
content upon freeing in the conventional Linux kernel.
The conventional Linux kernel zeros pages only at
allocation time and only for nonkernel processes for
security. In the compression-aware kernel, pages are
cleared when they are freed; hence, all of the pages in
the free-page pool are zero-filled. Recall that zero-filled
pages consume 1/64 of the original size of their memory.
Zeroing pages, coupled with dynamic adjustment of the
free-page pool watermarks, allows us to control physical-
memory utilization.

An application may rapidly change the content of its
memory and therefore may rapidly increase the physical-
memory utilization. In such cases, the compression-
management schemes described so far may not be quick
enough to reduce or keep memory utilization below
th_danger50.90 because the reduction in memory
utilization is partly governed by the speed of swap-disk
access, while the increase is governed by the speed of
memory access. We use busy kernel threads to stall the
execution of such applications. Kernel processes, one per
processor, are created at boot time. These processes are
normally idle. If physical-memory utilization increases
above th_danger12%50.92, the idle processes are
signaled to begin busy-spinning. This has the effect of
stalling other processes in the system so that they cannot
execute and increase physical-memory utilization until it
falls below th_danger.

Compression support under Windows NT/2000
Under Windows NT/2000, an in-kernel solution requires
source-code access, which was not available to us. Hence,
we present here the approach called the “outside kernel
solution,” which consists of a device driver (Compmem

on Windows NT 4, CMemW2k on Windows 2000), the
compression management service (CMS), and one or more
(depending upon memory size) “memory-eater” processes.
The device driver is a kernel-mode component, while CMS
and the memory eaters are user-mode components. The
overall architecture of the compression-management
software under Windows NT/2000 is shown in Figure 6.
The functionality of each component is described in the
following sections.

The device driver provides the following facilities:

1. Tracking of the physical utilization state.
2. Allowance for programming the thresholds of the

low-physical-memory interrupts.
3. Broadcast notification of low-physical-memory

interrupts to interested client applications.
4. Access to special page-operation functions of the

compressed-memory controller.
5. Various memory-compression statistics.

In a manner similar to that of the Linux in-kernel
implementation, the device driver categorizes memory
utilization into three configurable states: steady, warning,
and emergency. The driver provides client applications the
ability to associate event-notification objects with each
state. Upon detection of a memory-state change, the
driver will reset the events associated with the prior
memory state, and then set the events associated with
the new memory state.

The device driver also supports user-mode access to
MXT fast-page operations. The key page operation that
the driver exposes to user-mode applications is the zero
page operation. The application can pass down to the
driver a virtual address in its process space and a length.
The driver will convert the address from virtual to physical
and invoke the zero page operation on each page in the
range, thus reducing physical-memory utilization.

The compression management service (CMS) is the
user-mode portion of the compressed-memory control
system under Windows. It runs as a service process, which
is equivalent to the role of UNIX** daemons under
Windows. A service runs with real-time process priority
so that it will preempt most other user-mode processes in
the system. During initialization, the CMS determines the
difference between real-memory size and physical-memory
size. This result, called MaxMemToTakeAway, is the
maximum amount of memory that must be removed
from the virtual memory manager if an application(s)
completely fills memory with incompressible data. Since
the software is not part of the operating system, it is not
possible to remove pages of real memory directly from the
virtual memory manager page-frame database. Instead,
memory is consumed by calling VirtualAlloc() to allocate
pages. In Windows NT/2000 the maximum amount of

B. ABALI ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

294

memory that a process can allocate via VirtualAlloc() is
between 2 and 3 GB, depending on the version of the
operating system. This number includes code, static data,
stack, and run-time overhead.

The CMS spawns one or more processes known as
“memory eaters.” Each memory eater is designed
to allocate 1 GB of memory. Enough memory
eaters are spawned so that in total they can allocate
MaxMemToTakeAway bytes of memory. A block of
shared memory is used as the means of communication
between CMS and the memory eaters. The CMS directs
the memory eaters to allocate or release memory being
held by writing either a positive or negative adjustment
value into the shared-memory block. The memory eaters
update the adjustment as they perform their work, which
is calculated as follows:

EndZoneSize 5 L3CacheSize 1 NonPagedPoolSize

1 ~LockedPages 3 PAGE_SIZE! 1 CTTSize

1 SizeOfUncompressedRegions 1 BugCheckSize.

The BugCheckSize is the size of code that creates an
abnormal end (abend) in the OS. If the emergency state
threshold is breached, it is considered a fatal condition,

and the OS is quickly brought to a halt in order to reduce
the chance of data loss.

The end zone is further divided up into additional zones
that make up the various memory states, each with an
associated threshold as depicted in Figure 4. The
calculations are as follows:

● EmergencyStateThreshold 5 MaxPhysical 2

BugCheckZoneSize.
● EmergencyZoneSize 5 [1 2 (1/CurrCompRatio)] 3

(L3CacheSize 1 NonPagedPool 1 LockedPagesCount) 1

PagerCodeSize.
● WarningStateThreshold 5 EmergencyStateThreshold 2

EmergencyZoneSize.
● WarningZoneSize 5 EndZoneSize 2

BugCheckZoneSize 2 EmergencyZoneSize.
● SteadyStateThreshold 5 WarningStateThreshold 2

WarningZoneSize.

Note that the size of the emergency zone is calculated by
using the inverse of the compression ratio. Assuming a
heterogeneous pattern of data throughout main memory
implies that as the compression ratio deteriorates, the
data that make up the emergency zone will also share this
trait. This means that the opportunity for expansion of the

Figure 6

Compression management services under Windows.

CPU
blockers

Compressed-
memory
manager

Compression management service Memory-eater
process(es)

(used to take memory away
from the system)

Third-party
applications

Compression Management Software Architecture

User mode

Kernel mode

Compressed-memory device driver
Memory

state
broadcasts I/O control interface

Low
memory
interrupt
handling

Compressed-
memory
statistics

AWE
statistics
gathering
(Windows

2000
only)

System
service

call
booking

Rerouted
AWE
API calls

Page
operations

System
service

call
dispatch

Virtual
memory
manager

I/O
manager

Kernel

Windows NT executive/kernel

Interprocess
communication

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 B. ABALI ET AL.

295

data will be diminished as well. A smaller emergency zone
can be tolerated, with the balance of the space dedicated
to the warning zone. An improving compression ratio has
more of the end zone given to the emergency zone instead
of the warning zone in order to allow for maximum
tolerance of data expansion.

CMS passes the thresholds for each of the memory
states to the driver, and then registers three event
“handles” to be signaled as the system changes its memory
state. Once the interrupt thresholds have been calculated,
CMS calculates the m_MinConsumptionPhysical value.
This variable represents the amount of physical memory
that must be in use for CMS to determine whether or
not a memory adjustment is necessary. It is set to the
size of the emergency zone. The rationale is that as the
emergency zone increases in size, CMS has to check
earlier for trouble. Note that the zones, thresholds, and
m_MinConsumptionPhysical are recalculated periodically
as usage of real and physical memory changes. As
described in the general introduction to the compression-
management software, processes must be prevented from
running if the physical-memory compression continues to
degrade despite forced paging and zeroing of pages. For
this purpose, the CMS spawns and binds one CPU blocker
thread per processor in the system. The CPU blockers are
utilized when all user applications must be prevented from
running. Finally, the CMS spawns a thread in which it
executes the compressed-memory management algorithm.

The CMS management thread waits for one of the
memory-state notification events from the driver, the
terminate event, or a wait timeout value. The wait timeout
value varies between the default value (1000 ms) and 0 for
any memory state other than steady state. Upon leaving
the wait, CMS will gather updated memory usage statistics
via a memory-status provider object that is appropriate
to the version of Windows on which the code is being
executed. One of the more interesting aspects of the
memory-status provider is the way it determines the
amount of memory that Windows NT/2000 thinks is
in use. The operating system provides memory usage
statistics through a documented API. However, those
statistics are not adequate for controlling compressed
memory. In order to make the correct computation,
the number of free zeroed pages is needed. While the
operating system zeros all free pages in the system, the
statistic for available memory includes not only the free-
page list (zeroed pages) but also the standby list and the
zero-page list (list of pages to be zeroed). There is no
documented way to retrieve the number of pages on the
free-page list. The solution is to generate a random set
of pages to sample across the size of real memory. The
corresponding set of CTT entries for each page is
examined. The number of zeroed pages in the set is

calculated, and the number of zeroed pages in the system
is estimated from the results.

The physical-memory usage statistics are modified to
include the size of the compression translation table
(CTT) and any uncompressed-memory regions that have
been defined. Typically the uncompressed-memory region
is the lower 1MB DOS area and is set up by the BIOS.
This is necessary because the physical-memory usage
reported by the memory-compression controller does
not account for these values. The m_TZone variable
represents the sum of the 32MB L3 cache and the size of
the resident portion of the operating system kernel. When
the system is in steady state and the physical-memory
usage is less than m_MinConsumptionPhysical, any
memory held by the memory eaters is released back to the
system. The system is considered to be in a safe state.
If this is not the case, the TargetedRealMemoryUse is
calculated by multiplying the amount of physical memory
in use by the boot compression ratio. To determine the
memory adjustment needed, the actual amount of real
memory in use plus the total amount of memory already
held by the memory eaters is subtracted from the
TargetedRealMemoryUse. This is called the “adjustment.”
A negative result means that the compressibility of the
system is equal to or greater than the boot compression
ratio. This means that the memory eaters should release
adjustment units of memory back to the system. If the
adjustment is greater than zero, the memory eaters must
allocate adjustment units of memory. In doing so, the
memory eater calls VirtualAlloc() for the required
memory. The memory eater then passes a pointer to the
memory and the length to the device driver to perform
a zero-page operation on the pages it comprises.

If the CMS returns from its wait state because the
warning or emergency event has been signaled, it will
switch the timeout for the next iteration to 0. This is done
so that the CMS has as much CPU time as possible to
analyze the memory conditions and allow the memory
eaters to compensate for the deteriorating memory
condition as quickly as possible. Recall that there is also
one CPU blocker thread per processor waiting for a signal
from the driver, indicating that the memory usage has
moved into the emergency state. Once the CPU blocker
is notified of the emergency condition, it will “busy-spin”
on the CPU to which it is bound, which has the effect of
blocking all other user applications from running. This is
necessary because once the system enters the emergency
state, it is very close to running out of physical memory.
Allowing user applications to run might further
deteriorate memory conditions and lead to system failure.
The CPU blocker runs at a real-time-idle priority, which is
just below the priority of the CMS and the memory eaters.
This permits the compressed-memory management to
preempt the blocker threads but also allow the blocker

B. ABALI ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

296

threads to block other user-mode applications. The CPU
blocker threads will stop busy-spinning on the CPUs when
they are signaled that the memory system has moved back
into the steady or warning state. It is then safe to allow
other applications to continue running.

The operating system itself has threads that run at real-
time priority, normal or higher. These threads are not a
problem for the compression controls because they run
for very short durations and cannot change the overall
compressibility of the system. However, it is possible for
other applications to be run at real-time priority or higher,
which in theory can be a problem for the compression
controls. However, it should be noted that applications
running at real-time priority or higher that do not yield
the CPU could interfere with the normal operation of the
Windows virtual memory manager itself and cause the
operating system to behave erratically. One way to avoid
having these applications interfere with the compression-
control software is to have the controls dynamically lower
the process priority (or suspend the process entirely) while
in the emergency state.

Windows 2000 further provides address windowing
extensions (AWE) that require special consideration.
AWE allows a process to go beyond the 2–3GB user-
mode address limitations of the 32-bit Windows/Intel x86
model. Using the AWE API, processes can allocate
regions of memory that Windows 2000 will never page
to disk. The application creates an “address window” in
its process address space into which AWE regions are
mapped so that they can be addressed. The compression-
management driver provides statistics on AWE usage.

In order to use the AWE API, an application must be
running under an account in which the administrator has
granted the “pin pages in memory” privilege; and because
it is considered a privileged API set, Windows 2000 will
allow most of the memory to be pinned down (;2/3 of all
memory). Since the pages of memory that are allocated
by the virtual memory manager for AWE allocation are
not pageable, they cannot be compensated for by using
the compression-control method described above. For
example, in a 1024MB physical/2048MB real system, an
application could allocate ;1400 MB of AWE pages. If
the application fills those AWE pages with incompressible
data, the system will fail.

Two solutions are currently being examined, both
relying on having the device driver trap the AWE
system calls and augment their functionality. The most
straightforward solution is to treat all AWE regions of
memory as if the data that will be written are completely
incompressible. For example, half of physical memory can
be set aside as the total amount of memory that may be
used for AWE in the system. As applications request
AWE memory, a check is made to see whether there is
enough AWE quota left to grant the request. If so, the

allocation request is passed on to the virtual memory
manager; otherwise the device driver fails it. CMS has the
memory eaters allocate pages to back AWE memory that
has been allocated. For example, in the system mentioned
above, 512 MB would be allowed to go to AWE pages.
This leaves a total of 1024 MB of real pages left to other
applications in the system. CMS would have the memory
eaters hold 512 MB of real space to back the AWE
allocation. A second possibility is to back only the mapped
AWE pages. The only way that the compressibility of an
AWE region can change is for it to be mapped into the
virtual address space of a process. This implementation
allows for more AWE memory use, because it does not
assume that each region will have the absolute worst
compressibility of 1:1.

Reference [6] discusses the need to monitor the I/O
request in the MXT architecture. The need arises from
the fact that the I/O is streamed through the L3 cache.
If too many I/O requests are outstanding, they can force
L3 cache writebacks. If these are not properly accounted
for, they can result in physical-memory exhaustion when
the L3 content is not sufficiently compressible. In the
Windows system, a set of filter drivers may be inserted
to monitor and throttle the I/O requests.

4. Performance evaluation

Performance impact of compression
The MXT memory system uses a relatively long 1KB
compression block size to be able to compress efficiently,
since shorter blocks may not compress well. Because of
the compression and decompression operations performed
on these blocks in the memory controller, memory access
times are longer than usual. The 32MB L3 cache contains
uncompressed (1KB) lines to reduce the effective access
times by locally serving most of the main-memory
requests. Since this type of memory organization is
new, we used a database benchmark to measure its
performance impact. In these experiments, we used an
MXT system with dual 733-MHz Pentium III processors
with Windows 2000 and a single disk drive. The MXT
hardware was an early prototype, which, because of
hardware bugs, had some of its performance-enhancing
features, such as bus-defer response and processor IOQ
depth limited to 1, disabled. We compared the MXT
hardware to a standard system with similar hardware
characteristics except with no compression or L3 support.
We present the results of this database study in the next
section. Performance results using CPU benchmarks may
be found in [14].

Database benchmark results
The MXT system has been measured running an insurance
company database schema. This configuration is used

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 B. ABALI ET AL.

297

within IBM primarily as a quick regression test for
ascertaining the impact of DBMS design changes (http:
//www.ibm.com/software/data/db2/). It is substantially less
costly and quicker to run than complex benchmarks such
as TPC-C**, but is only coarsely representative of the
performance characteristics that might be expected.
Several configurations were run on the prototype
hardware: 512 MB with MXT off, 512 MB (1GB
expanded) with MXT turned on, 1 GB MXT off, 1 GB
MXT on (2 GB expanded), and 2 GB MXT on (4 GB
expanded) configurations. Benchmarks ran on the
Windows 2000 operating system. Two runs were made for
each configuration: a cold run in which the file cache is
initially empty, and immediately following that a second,
warm run, in which the buffers have been “warmed” by
the preceding cold run.

Figure 7 shows the performance benefits of MXT. For
the 512MB system when compression is on, it doubles the

effective amount of memory and the benchmark runs 25%
faster than the compression-off case. For the 1GB system
when compression is on, it doubles the effective amount
of memory to 2 GB, and the benchmark runs 66% faster
than the compression-off case. It is interesting to note that
the benefit of larger memory is more pronounced for this
workload for larger memory sizes, which is indicative
that both the smaller 512MB memory and 1GB memory
configurations are memory-starved. Finally, the 2GB
configuration (4GB with compression on) contains the
entire database in memory. The performance improvement
in this case is 300%. Figure 7 also shows “performance
twins” and “cost twins” to emphasize the benefits
of MXT. Performance twins perform nearly identically;
however, the MXT-on twin costs less, since its memory
requirements are reduced by one half. Cost twins have the
same amount of physical memory, but the MXT-on twin
performs better because of the doubling of memory.

Figure 8 shows run times of the individual DB2*
queries in a 4GB system after warmup. The database
is in memory at this point, so most I/O is eliminated.
Generally, queries run a bit faster with compression on.
Query 16 is an exception. This result is explained in
Figures 9 and 10, which detail L3 cache accesses and
misses for Queries 7 and 16. Query 7 has much higher
L3 access and miss rates, and the compression ratio
for this database is 2.68:1, resulting in improved bandwidth
between the L3 cache and main memory with
compression on.

However, the standard system generally runs faster. The
“standard system” used the same processors, twice the
amount of SDRAM used in MXT, and a similar memory
controller, except with no compression or L3 support. On
this early MXT prototype, performance-enhancing features

Figure 7

Database benchmark results for five different configurations.

0

10
20
30

40
50
60

70
80
90

512 MB
MXT OFF

512 MB
MXT ON

(1 GB)

1 GB
MXT OFF

1 GB
MXT ON

(2 GB)

2 GB
MXT ON

(4 GB)

M
in

ut
es

Cold Warm

Cost twins: Cost nearly the same, but perform differently
Performance twins: Perform nearly the same but cost differently

Cost twins

Cost twins
Performance

twins

Figure 8

DB2 query run times.

Q7 Q16
Queries

0

20

40

60

80

100

120
Standard
On
Off

Se
co

nd
s

Figure 9

Query 7 L3 accesses vs. misses.

Time, 106 s
0

1

2

3

4

5

0

10

20

30

40

50

60

70

80

90

100

Writeback

M
is

se
s

an
d

w
ri

te
ba

ck
s,

th
ou

sa
nd

s

A
cc

es
se

s,
m

ill
io

ns

Access Miss

B. ABALI ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

298

of the processor bus, such as bus defer response and IOQ
depth limited to 1, were disabled because of hardware
bugs, which is one possible explanation. Another
possibility is that higher L3 miss rates degrade overall
performance compared to a standard system without an
L3 cache.

Compressibility of applications
Now that the performance of the MXT system has been
established, we turn our attention to the compressibility
of main-memory content for various applications. We
measured the compression ratios on the actual MXT
hardware whenever possible, and we used an estimation
tool when MXT hardware was not available. The
estimation tool samples the live memory content while
the application is running on a standard computer and
predicts the compression ratio. Results show that for
most of these applications, main-memory content can be
compressed, usually by a factor of 2:1, justifying the real-
to-physical memory ratio chosen for the MXT systems.
The estimation tool is available for download at http:
//oss.software.ibm.com/developerworks/opensource/mxt/.

On the MXT hardware, the real and physical memory
utilizations were recorded using an instrumentation
register of the memory controller. The sectors-used
register (SUR) reports to the operating system the amount
of physical memory in use. Every two seconds, a sampler
program reads the SUR register and the real-memory
utilization as reported by the OS and saves them in a file
to be processed later. The measured memory values are
for the entire memory. Therefore, in addition to the
memory utilization of the benchmark application, the
measurements include possibly large data structures such
as file cache and buffer cache that the OS maintains for
efficient use of the system. In a postprocessing step, we
took the average of the samples to produce the average
compression ratio of a given benchmark.

Figure 11 shows the compression ratios for a few
applications. Synopsis, Photoshop**, MSDN Install, and
DB2 compression ratios were measured on the MXT
hardware with the Windows NT 4.0 or Windows 2000
operating system. The Synopsis tool is used as a step
in automating chip design. Photoshop compressibility
varies significantly, depending on the properties of the
images being processed. For example, high-resolution
topographical maps are incompressible, while images
having less resolution or areas of constant background
compress well. Teiresias, from IBM Research, is an
efficient algorithm for finding patterns in genetic
structures. Teiresias ran on a stock PC, and the
compressibility was measured by an estimation tool that
sampled the memory contents. This compressibility
measurement was taken while analyzing the E. coli DNA.
Microsoft Developer Network (MSDN) installation and

most software installations compress poorly, since the CD-
ROM files are already compressed. The install program
itself consumes only 4 MB. However, the associated file
cache or Windows NT standby pages fill the remainder
of memory. The DB2 result is for an insurance company
database schema. SPEC** CPU 2000 is the average
of the twelve integer benchmarks in the SPEC suite.
The web site www.pc.ibm.com is a live web server used by
IBM PC Company customers. This result was obtained on a
production web server, and we used the estimation tool to
sample memory contents.

Figure 12 shows the compressibility of the DB2
insurance database over time. The set of DB2 queries was
run three times. The first run took 44 minutes and was a
cold run, reading the database from disk. The second and

Figure 11

Compressibility of various applications.

0

1

2

3

4

Sy
no

ps
is

lo
gi

c
sy

nt
he

si
s

Ph
ot

os
ho

p

M
SD

N
In

st
al

l

D
B

2
da

ta
ba

se

SP
E

C
C

PU
20

00
av

g.

w
w

w
.p

c.
ib

m
.c

om

T
ei

re
si

as
,

E
.c

ol
iD

N
A

C
om

pr
es

si
on

ra
tio

2.1

1.6

3.4

1.2

2.68
2.3

2.1

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 B. ABALI ET AL.

299

third runs took 12 minutes each, following 20 minutes of
idle time. The average compressibility was 2.68:1.

5. Conclusions
In this paper we have described and evaluated a computer
system with hardware main-memory compression that
effectively doubles the size of the main memory. We
presented an overview of the MXT hardware technology
and then described the software support for main-memory
compression under Linux and Windows NT/2000. We
measured the impact of compression on application
performance and determined that hardware compression
has a negligible penalty over an uncompressed hardware.
We measured real and physical memory utilization for a
few applications and determined that main-memory
content can usually be compressed by a factor of 2
or more.

Future work might include a more detailed study of
the L3 cache shared by CPUs and I/O devices. L3
performance with several applications running at the same
time or with I/O streaming through the L3 cache will
require further study.

Acknowledgments
The authors express thanks to Brett Tremaine and
Michael Wazlowski, who described the operation of the
L3 cache/compressed-memory controller chip to us, and
to Chuck Bauman, Peter Franaszek, Michel Hack, and
Philip Heidelberger for many valuable discussions and
suggestions during this project. Parts of this paper were
presented at the Memory Wall Workshop [4]; we are
grateful to the referees of this paper as well as the
workshop organizers, referees, and attendees for their
valuable comments and criticism.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Microsoft
Corporation, Intel Corporation, The Open Group,

Transaction Processing Performance Council, or Adobe
Systems, Inc.

References
1. D. A. Luick, J. D. Brown, K. H. Haselhorst, S. W.

Kerchberger, and W. P. Hovis, “Compression Architecture
for System Memory Applications,” U.S. Patent 5,812,817,
1998.

2. P. Franaszek, J. Robinson, and J. Thomas, “Parallel
Compression with Cooperative Dictionary Construction,”
Proceedings of the Data Compression Conference, DCC’96,
IEEE, 1996, pp. 200 –209.

3. S. Arramreddy, D. Har, K. Mak, T. B. Smith, B.
Tremaine, and M. Wazlowski, “IBM X-Press Memory
Compression Technology Debuts in a ServerWorks
NorthBridge,” presented at the HOT Chips 12
Symposium, August 13–15, 2000.

4. B. Abali and H. Franke, “Operating System Support for
Fast Hardware Compression of Main Memory,” presented
at the Memory Wall Workshop, International Symposium
on Computer Architecture (ISCA2000), Vancouver, B.C.,
July 2000.

5. P. Franaszek and J. Robinson, “Design and Analysis of
Internal Organizations for Compressed Random Access
Memory,” Research Report RC-21146, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY,
April 1998.

6. P. Franaszek, P. Heidelberger, and M. Wazlowski, “On
Management of Free Space in Compressed Memory
Systems,” Proceedings of the ACM Sigmetrics Conference,
ACM, Atlanta, GA, June 1999, pp. 113–121.

7. P. Wilson, S. Kaplan, and Y. Smaragdakis, “The Case
for Compressed Caching in Virtual Memory Systems,”
Proceedings of the USENIX Annual Technical Conference,
USENIX Association, Monterey, CA, June 1999, pp.
6 –11.

8. M. Kjelso, M. Gooch, and S. Jones, “Empirical Study of
Memory Data: Characteristics and Compressibility,” IEE
Proceedings on Computers and Digital Techniques, Vol. 45,
No. 1, pp. 63– 67, IEE, 1998.

9. Sergei Y. Larin and Thomas M. Conte, “Compiler-Driven
Cached Code Compression Schemes for Embedded ILP
Processors,” Proceedings of the Annual International
Symposium on Microarchitecture, 1999, pp. 82–92.

10. I.-C. K. Chen, J. T. Coffey, and T. N. Mudge, “Analysis
of Branch Prediction via Data Compression,” Computer
Architecture News 24, 128 –137 (October 1996).

11. John Kalamatianos and David R. Kaeli, “Predicting
Indirect Branches via Data Compression,” Proceedings of
the Annual International Symposium on Microarchitecture,
1998, pp. 272–281.

12. P. A. Franaszek, P. Heidelberger, D. E. Poff, and
J. T. Robinson, “Algorithms and Data Structures for
Compressed-Memory Machines,” IBM J. Res. & Dev. 45,
No. 2, 245–258 (2001, this issue).

13. U. Vahalia, UNIX Internals, The New Frontiers, Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1996, ISBN 0-13-101908-2.

14. B. Abali, H. Franke, D. E. Poff, X. Shen, and T. B.
Smith, “Performance of Hardware Compressed Main
Memory,” Proceedings of the Seventh International
Symposium on High Performance Computer Architecture
(HPCA-7), Monterrey, Mexico, January 20 –24, 2001,
pp. 73– 81.

Received August 29, 2000; accepted for publication
March 5, 2001

Figure 12

DB2 database compressibility: real vs. physical memory utilization.

Time, 97 minutes
0

500

1000

1500

2000

2500

3000

Real

Physical

M
B

B. ABALI ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

300

Bulent Abali IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (abali@us.ibm.com). Dr. Abali has been a Research
Staff Member at the IBM Thomas J. Watson Research Center
since 1989; he is currently a manager responsible for system
software and performance evaluation of advanced memory
systems. He has contributed to numerous projects on parallel
processing, high-speed interconnects, and memory systems,
including RS/6000 SP and MXT. Dr. Abali received his Ph.D.
degree in electrical engineering from Ohio State University.

Hubertus Franke IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (frankeh@us.ibm.com). Since 1993 Dr. Franke has been
a Research Staff Member at the IBM Thomas J. Watson
Research Center, where he currently manages the Enterprise
Linux group. He contributed to the IBM SP2 system software
and architecture, the K42 operating system, the development
of Linux for highly scalable architectures, and the MXT Linux
support. Dr. Franke has received multiple IBM Outstanding
Innovation Awards and Outstanding Technical Achievement
Awards, and he has published more than 50 papers and 13
patents. He received a first-in-class Diplom. in Informatik
from the Technical University of Karlsruhe, Germany, in 1987
and a Ph.D. degree in electrical engineering from Vanderbilt
University in 1992. His research interests include architectures
and operating systems for highly scalable systems, distributed
systems, and system security. He is a member of the IEEE.

Dan E. Poff IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (poff@us.ibm.com). Mr. Poff is a System Programmer
at the IBM Thomas J. Watson Research Center, where he
designs and develops MXT software compression controls.
Before joining the Research Center in 1982, he programmed
logic chip testers at IBM in East Fishkill, New York. At the
Watson Research Center, he first joined a group that
developed IBM’s first port of UNIX to the first RISC
machine, then assisted in porting Carnegie Mellon
University’s MACH to an early SMP RISC machine. He
subsequently assisted in porting MACH to RS/6000. In the
early 1990s he joined a group porting Windows NT to the
IBM PowerPC. He has received an IBM Outstanding
Technical Achievement Award. Mr. Poff received an M.A.
degree in history and philosophy of science from Indiana
University in 1969 and a B.S. degree in physics from the
University of Cincinnati in 1964. He has five patents pending
and several publications, and he is a member of the ACM.

Robert A. Saccone, Jr. IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (rsaccone@us.ibm.com). Mr. Saccone is a Senior
Software Engineer at the IBM Thomas J. Watson Research
Center, where he designs and develops software to enable
operating systems to take advantage of MXT technology.
Before joining the Watson Research Center in 1999, he
was a lead engineer and manager at Symantec Corporation,
Framingham/Bedford, Massachusetts, where he worked on the
rewrite of pcANYWHERE for the Windows NT/Windows 9X
platforms. He has also held positions at Cheyenne Software,
Rolling Meadows, Illinois, and Computer Associates, Lisle,
Illinois, where he focused on network management software
and rapid application development tools. His areas of interest
are large-scale software design, distributed systems, and
operating systems implementations. Mr. Saccone received his

B.S. degree in computer science from the State University of
New York at Stony Brook in 1989. He has three patents
pending.

Charles O. Schulz IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (cschulz@watson.ibm.com). Mr. Schulz is a
manager at the IBM Thomas J. Watson Research Center,
where he is responsible for advanced memory and systems
architectures supporting the IBM xSeries products. He
received his B.S. and M.S. degrees in electrical and electronic
engineering from North Dakota State University in 1971 and
1972, respectively. Prior to joining IBM in 1990, he held
engineering and management positions at various aerospace
and computer companies. Mr. Schulz has extensive experience
in high-reliability and fault-tolerant computer design as well
as computer design for real-time control of aircraft and
critical aircraft systems. His current research interests include
computer architecture for high-performance scalable and
partitioned servers. He has one issued patent and fifteen
pending, as well as various technical publications on computer
architecture and design.

Lorraine M. Herger IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (herger@us.ibm.com). Ms. Herger joined the IBM
Research Division in 1990. She is currently a Senior Technical
Staff Member and Senior Manager of the Emerging Systems
Software group, which explores new directions in operating
environments. Before joining the Watson Research Center,
she was a design and development engineer at the IBM
Kingston, New York, laboratory and IBM Instruments,
contributing to several IBM products. Ms. Herger received an
M.B.A. degree from the Stern School, New York University,
in 2000, and her B.S.E.E. degree from the University of
Maryland before joining IBM in 1982.

T. Basil Smith IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (tbsmith@us.ibm.com). Dr. Smith has been a Research
Staff Member at the IBM Thomas J. Watson Research
Center since 1986. He is currently a Senior Manager
responsible for research into exploitation of high-leverage
server innovations and manages the Open Server Technology
Department. His work has been on memory hierarchy
architecture, reliability, durability, and storage efficiency
enhancements in advanced servers. Dr. Smith has received
IBM Outstanding Innovation Awards and Outstanding
Technical Achievement Awards for his contributions in these
fields at IBM. Before joining IBM in 1986, he worked at
United Technologies Mostek Corporation in Dallas and
at the Charles Stark Draper Laboratory in Cambridge,
Massachusetts. He holds more than 20 patents in computer
architecture and reliable machine design. Dr. Smith received
his Ph.D. degree in computer systems, and his S.M. and S.B.
degrees from MIT. He is an IEEE Fellow and a member of
the IEEE Computer Society Technical Committee on Fault-
Tolerant Computing, and is active in that community. Most
recently he was General Chair of the Dependable Systems
and Networks Conference (DSN-2000) held in New York in
June 2000.

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 B. ABALI ET AL.

301

